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A B S T R A C T

Acute pancreatitis (AP) is a common digestive system disease with severe symptoms. Its causes are diverse, 
including drug induced pancreatitis (DIP) on the rise in recent years. Antibiotic drugs such as tetracycline, which 
induced AP has received considerable attention. Tetracycline disrupts pancreatic cell apoptosis, proliferation and 
activate inflammatory signaling pathways. Chymotrypsin (CHT) is the main digestive protease in the pancreas 
and is crucial for the development of pancreatitis. Thus, there is an urgent need to develop a practical and 
efficient approach for real-time tracking of CHT secretion from pancreatic cells under drug-induced pancreatitis 
(DIP) conditions. To address this challenge, we report the rational design and synthesis of a near-infrared 
fluorescent probe, termed HNTC-DIP, for highly accurate monitoring of CHT dynamics in a tetracycline- 
induced pancreatitis model. The probe rapidly detects CHT within 5 min through enzymatic cleavage of its 
ester bonds, which restores the intramolecular charge transfer (ICT) process. The fluorescence intensity shows a 
14–15-fold enhancement. In addition, it has been utilized effectively to bioimage and evaluate endogenous CHT 
variations in DIP models (tetracycline -induced pancreatitis model). HNTC-DIP can serve as a reliable and 
suitable tool for accurately visualizing DIP damage for the first time and these applications also demonstrate the 
potential in the risk assessment of clinical application for antibiotic drugs.

1. Introduction

AP is an inflammatory disorder of the pancreas characterized by 
severe tissue damage and necrosis [1,2]. The incidence of AP continues 
to rise, posing a significant healthcare and socioeconomic burden [3,4]. 
Gallstones and excessive alcohol consumption are the primary risk fac
tors, while approximately 15–25 % of cases are attributed to other 
causes such as drug induced [5–7]. In recent years, more attentions have 
been paid to DIP [8]. Notably, tetracycline-associated DIP has become a 
focus of clinical concern [9–11]. The first reported association between 
tetracycline and AP dates back to the 1960s in women receiving intra
venous therapy for fatty liver disease [12]. Subsequently, large-scale 
pharmacoepidemiologic studies have demonstrated that tetracycline 
users (defined as individuals with prescriptions filled within 0–30 days 
prior to the index date of pancreatitis diagnosis) has 60 % increased risk 
of AP [12]. Through an integrated approach combining network toxi
cology and molecular docking, researchers such as Lei et al. have 
elucidated tetracycline’s toxic pathways in AP. Tetracycline may trigger 

inflammation, apoptosis, and metabolic dysregulation in pancreatic 
cells by modulating core targets such as TP53, TNF, and AKT1, as well as 
related signaling pathways (e.g., PI3K-Akt, MAPK), ultimately leading to 
AP [13]. Scheme 1

Pancreatic lipase, trypsin, and CHT are all enzymes specifically 
expressed in the pancreas. Fan et al. analyzed pancreatic lipase using a 
fluorescence probe for early diagnosis of severe acute pancreatitis [14]. 
Ning et al. detected trypsin for screening trypsin inhibitor drugs [15]. 
CHT, as a crucial digestive protease in the pancreas, plays a pivotal role 
in the pathogenesis of pancreatitis [16]. It not only participates in food 
digestion, but also regulates trypsin activity through the degradation of 
trypsinogen, maintaining pancreatic homeostasis [17–21]. Currently, 
several biochemical methods exist for CHT detection, including 
fiber-based interferometry, mass spectrometry (MS), high-performance 
liquid chromatography (HPLC), and enzyme-linked immunosorbent 
assay (ELISA) [22–24]. However, most of these techniques suffer from 
limitations such as high cost and complex procedures. In contrast, 
fluorescent probes offer distinct advantages including excellent 
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Scheme 1. (A) Response mechanism of HNTC-DIP with CHT. (B) NIR fluorescence imaging of CHT in DIP.

Fig. 1. Recognition and response mechanism of HNTC-DIP to CHT. (A) Synthetic route of HNTC-DIP. (B) LC-MS validation of the response mechanism of HNTC-DIP 
toward CHT. (C) Results of density functional theory (DFT) computations for HNTC-OH and HNTC-DIP. (D) Molecular docking simulation of the interaction between 
HNTC-DIP and CHT was performed using Autodock Vina.
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biocompatibility, non-invasiveness, high sensitivity, and real-time 
visualization capabilities, enabling in situ monitoring of CHT activity 
[25–28]. Notably, no fluorescent probes have been reported for 
detecting CHT in DIP models to date [29–32]. To address this gap, we 
rationally designed and developed a novel near-infrared (NIR) fluores
cent probe, HNTC-DIP, for precise monitoring of CHT fluctuations in 
tetracycline-induced pancreatitis.

Here we report a near-infrared fluorescent probe HNTC-DIP based on 
dicyano-isoflurone for CHT activity [33]. Tetrabromobutyryl chloride 
group of HNTC-DIP serves as a specific recognition unit for CHT, 
enabling its selective identification. Following this recognition, 
HNTC-DIP binds to CHT via hydrogen bonding interactions. Compared 
to existing probes, HNTC-DIP exhibits specific responses to CHT in vitro, 
with the characteristics of rapid imaging and near-infrared light emis
sion [34–36]. HNTC-DIP also has excellent photostability, selectivity, 
biological safety and low cytotoxicity, and can quantitatively detect 
CHT within the range of 0–1600 U/L. We studied the sensing mecha
nism of HNTC-DIP using molecular docking simulations, liquid 
chromatography-high resolution mass spectrometry (LC-HRMS), etc. 
The mechanism of interaction between HNTC-DIP and CHT is that CHT 
breaks the ester bond, allowing HNTC-DIP to return to the fluorescent 
group HNTC-OH. Naphthalene serves as an excellent conjugated bridge 
for designing fluorophores with red-shifted emission profiles. The pho
tophysical characteristics of such systems are critically influenced by the 
nature of the π-bridge and the spatial arrangement between donor (D) 
and acceptor (A) units. The naphthalene-linked fluorescent group has a 
longer emission wavelength than previous benzene-linked fluorescent 
groups [37]. The red shift of HNTC-OH in fluorescence was confirmed by 
experimental measurement and theoretical calculation, and its strong 
ICT process was confirmed. In DIP cells, HNTC-DIP was successfully 
activated and real-time monitored CHT in DIP for the first time. 

Subsequently, it was injected into the DIP mice model via the tail vein, 
and could accurately perform real-time fluorescence imaging of the 
pancreas. This confirmed that HNTC-DIP has the ability to image the 
fluctuation of CHT during the process of DIP. Thus, HNTC-DIP suc
cessfully visualized CHT fluctuations during DIP progression, providing 
clinicians and patients with a more intuitive tool for recognizing 
tetracycline-induced pancreatitis.

2. Experimental procedure

2.1. General information

All reagents and instruments used in this study are detailed in the 
Supporting Information. Fluorophore HNTC-OH and compound 1 were 
prepared and characterized according to previously reported proced
ures, with their structural confirmation provided in Figures S1–S4.

2.2. Synthesis of HNTC-DIP

HNTC-OH (340 mg, 1 mmol) was dissolved in dichloromethane 
(10 mL), cooled in an ice bath for 10 min, followed by dropwise addition 
of triethylamine (101 mg, 1 mmol) under continuous stirring at 0 ◦C for 
an additional 10 min. Then 4-bromobutanoyl chloride (185.4 mg, 
1 mmol) was slowly added and stirred at room temperature for 30 min. 
The yellow product HNTC-DIP (259 mg, 53 %) was obtained by using 
dichloromethane/ethyl acetate (v/v, 80:1) as eluent. 1H NMR 
(300 MHz, CDCl3) δ 8.19 – 8.10 (m, 1 H), 8.02 – 7.87 (m, 1 H), 7.85 – 
7.72 (m, 2 H), 7.68 – 7.53 (m, 2 H), 7.31 (d, J = 8.1 Hz, 1 H), 7.02 (d, J 
= 15.8 Hz, 1 H), 6.87 (s, 1 H), 3.60 (t, J = 6.3 Hz, 2 H), 2.99 (t, J =
7.2 Hz, 2 H), 2.59 (d, J = 14.3 Hz, 4 H), 2.46 – 2.31 (m, 2 H), 1.12 (s, 
6 H) 13C NMR (151 MHz, CDCl3) δ 170.99, 170.95, 169.27, 169.17, 

Fig. 2. Spectroscopic properties and selectivity of HNTC-DIP. (A) Absorption spectral changes of HNTC-DIP (1 mM) upon reaction with 1 mM CHT. (B) Fluorescence 
spectral responses of HNTC-DIP following treatment with CHT. (C) Spectral variations of HNTC-DIP (10 μM) titrated with increasing concentrations of CHT 
(0–800 U/L). (D) Linear correlation of HNTC-DIP (10 μM) and CHT (0–600 U/L). (E) Time-dependent fluorescence response of HNTC-DIP to CHT (800 U/L). (F) 
Fluorescence intensity of HNTC -DIP (10 μM). (Number 1–29: probe only, Cu2+, Zn2+, K+, Ca2+, Na+, Mg2+, F− , Cl− , Br− , HCO3

− , HS− , CO3
2− , SO3

2− , PO4
3− , GSH, Cys, 

Hcy, LAP, ALP, AChE, BChE, CES2, Try, NE, ONOO-, O2
- , PL, CHT). (mean ± SD, n = 3).
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154.76, 153.53, 147.70, 146.91, 135.97, 133.16, 132.84, 132.81, 
132.70, 132.32, 132.21, 131.99, 131.80, 131.26, 127.35, 127.26, 
127.17, 127.00, 126.98, 126.87, 126.75, 126.73, 126.29, 125.27, 
125.21, 125.20, 124.49, 124.42, 124.05, 123.95, 123.48, 123.39, 
122.15, 122.00, 121.79, 118.25, 118.18, 117.47, 113.43, 113.14, 
112.65, 112.25, 79.63, 79.23, 43.05, 42.60, 42.38, 42.33, 39.40, 32.52, 
32.50, 32.11, 29.71, 28.10, 27.58, 27.56, 27.39, 13.05, 9.55, 9.47. HR- 
MS (m/z): Calculated for [C27H26BrN2O2] +: 491.1152, found: 
491.1075. (Figures S5, S6 and S7).

2.3. Spectrophotometric measurement

For spectral characterization, a solution of HNTC-DIP (10.0 μM) in 
phosphate-buffered saline (PBS) with DMSO was prepared and incu
bated with CHT at 37 ◦C for 40 min.

2.4. Fluorescence imaging and cell culture

Full details of the cell culture procedures are provided in the 

Supporting Information. AR42J cells were maintained in Dulbecco’s 
Modified Eagle Medium (DMEM) supplemented with 10 % fetal bovine 
serum (FBS) under standard conditions.

2.5. Fluorescence imaging in AP and DIP models of mice

Following a one-week adaptation period, mice were randomly 
assigned to three experimental groups: (1) the control group, adminis
tered physiological saline; (2) the L-arginine (Arg)-induced model 
group, receiving three intraperitoneal injections of Arg within 12 h; and 
(3) the tetracycline hydrochloride (TCH)-induced model group, 
receiving three intraperitoneal injections of TCH within 12 h. A detailed 
experimental protocol is provided in the Supporting Information.

3. Results and discussion

3.1. Synthesis route and response mechanism of HNTC-DIP

The detailed synthesis of HNTC-DIP is shown in Fig. 1A. The reaction 

Fig. 3. Fluorescence imaging of living cells subjected to various pretreatment conditions in vitro. (A) (a) AR42J cells incubated with 10 μM HNTC-DIP alone for 
0.5 h; (b) AR42J cells pretreated with 20 μg/mL Arg for 12 h; (c) AR42J cells pretreated with 100 μM CES2 for 12 h; (d) AR42J cells pretreated with 100 μM PL for 
12 h; (e) AR42J cells pretreated with 50 μg/mL Arg and 300 μM PMSF for 12 h. (B) (a) AR42J cells incubated with 10 μM HNTC-DIP alone for 0.5 h; (b) AR42J cells 
pretreated with 10 μg/mL Arg for 12 h, followed by incubation with 10 μM HNTC-DIP for 0.5 h; (c) AR42J cells pretreated with 20 μg/mL Arg for 12 h, followed by 
incubation with 10 μM HNTC-DIP for 0.5 h; (d) AR42J cells pretreated with 50 μg/mL Arg for 10 h, followed by incubation with 12 μM HNTC-DIP for 0.5 h; (e) 
AR42J cells pretreated with 50 μg/mL Arg, then cotreated with 300 μM PMSF for 0.5 h, and finally stained with 10 μM HNTC-DIP for 0.5 h. Scale bar: 200μm. 
(*P ≤ 0.05; ** P ≤ 0.01; *** P ≤ 0.001; **** P ≤ 0.0001, data analyses were performed on independent samples with equal variances; mean ± SD; n = 3).
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of HNTC-DIP to CHT was used for LC-MS analysis to further confirm and 
elucidate the specific and rapid response mechanism (Fig. 1B). Elec
trostatic potential mapping of HNTC-DIP and HNTC-OH clearly 
demonstrated an intramolecular charge transfer (ICT) feature with 
pronounced electron push-pull properties in HNTC-OH. This ICT effect, 
facilitated by its D–π–A configuration, ultimately induced intense fluo
rescence emission (Fig. 1C). Furthermore, the recognition moiety 4-bro
mobutyrylcan effectively quenches the fluorescence of HNTC-OH by 
disrupting its ICT process [38,39]. The CHT-specific recognition mech
anism of HNTC-DIP was further elucidated [40,41]. Enzymatic hydro
lysis of the ester bond between HNTC-OH and the 4-bromobutyryl 
recognition group by CHT restored the ICT process, leading to signifi
cant fluorescence recovery (Fig. 1D). Molecular docking simulations 
revealed a binding energy of − 7.7 kcal/mol between HNTC-DIP and 
CHT, indicating strong binding affinity between the probe and the target 
enzyme.

3.2. Spectral response and probe selectivity

HNTC-DIP itself shows a strong absorption maximum at 490 nm. 
After treatment with CHT, the absorption peak redshifted to approxi
mately 690 nm (Fig. 2A), along with a significant 43-fold fluorescence 
increase at 737 nm (Fig. 2B). The fluorescence titration results demon
strated that fluorescence enhancement of the reaction system exhibited 
good linearity with an equation of Y= 0.6408X+ 12.8175, R2= 0.9915 
in the concentration range of 0–600 U/L for CHT (Fig. 2C and 2D). The 
detection limit was found to be 0.51 U/L. As shown in Fig. 2E, upon 
introducing CHT (600 U/L) to HNTC-DIP solution, there was a rapid 
enhancement in fluorescence intensity at 727 nm, with the curve 
leveling off after 25 min. To study the specific selectivity of HNTC-DIP 
for CHT, we examined the impact of various analytes. As depicted in 
Fig. 2F, HNTC-DIP displayed high selectivity toward cations (Cu2+, 
Zn2+, K+, Na+, Ca2+, and Mg2+), anions (Br− , F− , Cl− , HCO3

− , HS− , 
CO3

2− , SO3
2− , and PO4

3− ), reactive sulfur (GSH, Cys, and Hcy), biological 
enzymes (Leucine Aminopeptidase, Alkaline Phosphatase, Acetylcho
linesterase, Butyrylcholinesterase, Carboxylesterase 2, Trypsin, 
Neutrophil Elastase and Pancreatic Lipase) and RNS/ROS (ONOO-, O2

- ). 
These analytes exhibited minimal reactivity, indicating the exceptional 
selectivity of HNTC-DIP for CHT and its suitability for use in complex 

biological environments. As demonstrated in Figures S8 and S9, the 
fluorescence intensity of HNTC-DIP alone remains largely stable across a 
pH range of 5.6–9.1 and temperatures between 25 and 42 ◦C. After re
action with CHT, maximum fluorescence enhancement was observed at 
pH 7.4 and 37 ◦C, indicating optimal performance of HNTC-DIP under 
physiologically relevant conditions. Moreover, it displayed an excellent 
photostability under the irradiation of a xenon lamp (Figure S10). 
Therefore, HNTC-DIP can serve as an effective probe for selective 
detection of CHT under complex physiological conditions. Subse
quently, the enzyme kinetics between HNTC-DIP and CHT was investi
gated. Michaelis− Menten diagram and the Lineweaver− Burk plot are 
depicted in Figure S11. The catalytic constant (Kcat/Km) was calculated 
as 91.419 M− 1min− 1.

3.3. Fluorescence imaging of endogenous CHT in living cells

Inspired by the excellent performance in vitro, we evaluated the 
potential of HNTC-DIP to monitor endogenous CHT in living cells. As 
shown in Figures S12 and S13, the hemolysis test indicated the excellent 
biocompatibility and more than 85 % AR42J cells survived even at 
10 mM HNTC-DIP, indicating that the cytotoxicity of HNTC-DIP to 
living cells was negligible. The capacity of HNTC-DIP to detect endog
enous CHT was evaluated in AR42J cells that stimulated with Arg, a 
commonly used agentia to trigger intracellular inflammation. After 
30 min of co-incubation with HNTC-DIP, the cells reached a plateau in 
fluorescence intensity, indicating signal stabilization (Figure S14). As 
depicted in Fig. 3A, AR42J cells treated with HNTC-DIP showed fluo
rescence weakly, which indicates a relatively low CHT level under 
normal conditions. Following 24 h Arg stimulation, we observed a 6.2- 
fold enhancement in fluorescence intensity. Meanwhile, intracellular 
fluorescence decreased in the presence of phenyl methane sulfonyl 
fluoride (PMSF), a scavenger of CHT, implying the specificity of HNTC- 
DIP in monitoring cellular CHT fluctuations. In CES2 treated or PL 
treated cells, the fluorescence fluctuations showed no significant vari
ations. These findings affirm the capacity of HNTC-DIP to selectively 
detect CHT in AR42J cells. As illustrated in Fig. 3B, upon the addition of 
varying concentrations of Arg followed by a 30 min incubation period, a 
progressive increase in red fluorescence intensity in AR42J cells was 
observed. Collectively, these results proved the capability of HNTC-DIP 

Fig. 4. (A) (a) AR42J cells following 0.5 h treatment with 10 μM HNTC-DIP; (b) AR42J cells after 12 h treatment with 10 μg/mL TCH, then treated with 10 μM 
HNTC-DIP for 0.5 h; (c) AR42J cells after 12 h treatment with 20 μg/mL TCH, then treated with 10 μM HNTC-DIP for 0.5 h; (d) AR42J cells after 12 h treatment with 
50 μg/mL TCH, then treated with 10 μM HNTC-DIP for 0.5 h; (e) AR42J cells were first pretreated with 50 μg/mL TCH and then co-incubated with PMSF (300 μM) 
for 0.5 h, followed by staining with 10 μM HNTC-DIP for an additional 0.5 h. Scale bar: 200 μm. (*P ≤ 0.05; ** P ≤ 0.01; *** P ≤ 0.001; **** P ≤ 0.0001, data 
analyses were performed on independent samples with equal variances; mean ± SD; n = 3).
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to fluorescently visualize CHT in AP cells.
Based on these promising results, we next evaluated the capability of 

HNTC-DIP to monitor CHT in living pancreatic cells under tetracycline- 
induced condition. Tetracycline, a widely used antibiotic, has been 
documented to induce AP. As depicted in Fig. 4, AR42J cells exhibited 
only weak fluorescence after 30 min of incubation with HNTC-DIP 

alone. Then, AR42J cells were first pre-incubated with TCH 
(10–50 μg/mL) for 24 h and then treated with HNTC-DIP for 30 min; 
this protocol resulted in bright fluorescence showing dose-dependent 
enhancement. Notably, a 5.2-fold increase in fluorescence intensity 
was achieved following treatment with 50 μg/mL TCH. The fluorescence 
is significantly reduced by the pretreatment with PMSF, a known 

Fig. 5. In vivo fluorescence imaging in mice and major internal organs. (A) Normal mouse after tail injection of HNTC-DIP (200 μM, 50 μL). (B) AP mouse after tail 
injection of HNTC-DIP (200 μM, 50 μL). (C) DIP mouse after tail injection of HNTC-DIP (200 μM, 50 μL). (D) Ex vivo fluorescence imaging of major organs of AP and 
DIP model mice. (E) Histopathological analysis of mouse organ sections by H&E staining (20 ×magnification).
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scavenger of CHT. In short, these observations indicate that HNTC-DIP is 
a promising probe for the detection of increased endogenous CHT level 
which is closely related to the DIP process in living AR42J cells.

3.4. Fluorescence imaging of endogenous CHT in AP and DIP models

We next investigated the suitability of HNTC-DIP for in vivo AP 
imaging by applying it to the AP mice. AP model was established using 
Arg induction according to previously described methods [42,43]. We 
initially selected control mice and model mice, then administered 
HNTC-DIP (200 μM, 50 μL) injection via the tail vein. As shown in 
Figs. 5A and 5B, the pancreatic fluorescence intensity of the AP mice 
rose significantly with the model time expanding. Collectively, these 
results proved the capability of HNTC-DIP to fluorescently visualize CHT 
in AP mice model. Afterwards, we applied probe HNTC-DIP to trace the 
endogenous CHT level DIP model mice. As demonstrated in Fig. 5C, 
intact mice treated with TCH showed significantly enhanced fluores
cence, suggesting elevated CHT levels in DIP. Based on these promising 
results, we next investigated whether HNTC-DIP could be applied for 
imaging at the whole-organ level. Fluorescence signals from various 
organs were captured and analyzed after dissecting the mice (Fig. 5D). 
Interestingly, increased fluorescence signals in the pancreas region were 
observed in AP and DIP mice. No signs of toxicity were detected in major 
organs via H&E staining (Fig. 5E) after the administration of HNTC-DIP. 
Based on the in vivo experiments, HNTC-DIP has been demonstrated to 
effectively visualize the dynamic changes of CHT in DIP mice models.

4. Conclusion

In summary, we designed and synthesized HNTC-DIP, a NIR fluo
rescent probe, for the specific detection and in vivo imaging of CHT 
activity in both AP and DIP mouse models. The probe recovers fluo
rescence signal by restoration of ICT process through cleavage of ester 
bonds. Spectroscopic assays revealed that HNTC-DIP responds to CHT 
within 5 min, yielding a 14–15 fold enhancement in fluorescence in
tensity. To our knowledge, HNTC-DIP represents the first NIR fluores
cent probe capable of visualizing CHT in DIP models. It is found that 
CHT upregulate in AP and DIP, revealing its importance in pancreas 
function and its potential value in pancreas diagnosis and therapy. This 
study alerts physicians to be vigilant about the risk of pancreatitis when 
prescribing tetracycline, providing new visual evidence for the rational 
clinical use of tetracycline. It also demonstrates the potential in the 
clinical application of antibiotic risk assessment. HNTC-DIP may serve 
as a promising tool for research on CHT associate diseases.
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