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ABSTRACT

Hashimoto’s thyroiditis is one of the most common autoimmune diseases. Due to the similarity of the traits,
traditional examination methods may misdiagnose it as thyroid cancer in some cases. Accurate diagnosis of
Hashimoto’s thyroiditis can avoid organ resection by misdiagnosis of thyroid cancer, preserve organ function for
patients and reduce surgical trauma. Here, we designed and synthesized a near-infrared fluorescent probe named
HNTC-HT for differentiated imaging of Hashimoto’s thyroiditis against thyroid carcinoma. Reactive oxygen
species (ROS), such as peroxynitrite (ONOO™), highly accumulated in Hashimoto’s thyroiditis. While the content
of ROS in thyroid cancer cells was significantly lower than that in Hashimoto’s thyroiditis cells. ONOO™ removes
the trifluoromethanesulfonic acid group by affinity substitution reaction. And then HNTC-HT restores to fluo-
rophore HNTC-OH which produces near-infrared fluorescence due to intramolecular charge transfer (ICT). We
successfully perform differentiated imaging of Hashimoto’s thyroiditis against thyroid carcinoma with HNTC-HT
by the specific detection of intracellular ONOO™. The fluorescence brightness of thyroiditis cells is much higher
than thyroid cancer cells, which proves that the probe HNTC-HT can be used to effectively differentiate
Hashimoto’s thyroiditis against thyroid cancer cells. Satisfactory results were also obtained in subsequent mouse
experiments. In this work, the fluorescence probe HNTC-HT activated by ROS has been more appropriately
applied, so as to address the limit in the misdiagnosis of Hashimoto’s thyroiditis as thyroid cancer, thus
expanding potential applications of near-infrared fluorescent probe in the diagnosis of thyroid disease.

1. Introduction

Hashimoto’s thyroiditis, characterized by serious decrease of thyroid

ultrasound, biopsy and so on [10,11]. However, in some cases, these
traditional methods cannot completely diagnose Hashimoto’s thyroid-
itis, and may misdiagnose it as thyroid carcinoma [12,13]. Accurate

function, is one of the most common clinical diseases in the world [1].
However, its insidious onset and slow progression always keep most
patients asymptomatic in the early stage [2,3]. As the disease progresses,
the patient’s condition worsens if effective measures are not taken in
time [4,5]. The histopathological features of Hashimoto’s thyroiditis
include lymphoblastic infiltration, follicular formation in the germinal
center, and parenchymal atrophy [6-8]. Thyroid lymphocyte infiltration
is the pathological feature of Hashimoto’s thyroiditis, and it is also
commonly appeared in thyroid carcinoma [9]. The current diagnostic
methods for Hashimoto’s thyroiditis include blood collection,
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diagnosis of Hashimoto’s thyroiditis helps patients avoid thyroidec-
tomy, thereby preserving thyroid function, avoiding surgical trauma and
improving life quality of patients [3,14]. Previous studies have shown
that oxidative stress caused by overexpression of ROS is closely related
to various pathological changes of Hashimoto’s thyroiditis [15].
Experimental studies in nonobese diabetic NOD.H2h4 mice suggest that
thyroid accumulation of reactive oxygen species (ROS) contributes to
the initiation and progression of Hashimoto’s thyroiditis. These mice
spontaneously develop thyroid peroxidase antibodies (TPOAb) and
thyroglobulin antibodies (TgAb)[16]. Ruggieri et al. analyzed several
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Scheme 1. (A) Reaction mechanism of HNTC-HT. (B) Illustration of near-infrared fluorescence imaging of ONOO™ by HNTC-HT in Hashimoto’s thyroiditis and

thyroid carcinoma.

oxidative stress markers of patients suffered from Hashimoto’s disease
and healthy people, and found the thyroid ROS was highly expressed in
the patients of Hashimoto’s disease versus healthy controls [17]. On the
other hand, cancer cells metabolize through glycolysis under hypoxia
[18,19]. As for thyroid cancer, over-accumulated ROS can clear them-
selves [20,21], and the expression of ROS in thyroid cancer is signifi-
cantly lower than that in inflammatory cells.

Peroxynitrite (ONOO"), as one of the most important ROS, is pro-
duced by the combination of nitric oxide and superoxide anion radical
[22]. ONOO™ demonstrates superior stability and oxidative capacity
compared to other ROS, making it an optimal target analyte for assessing
oxidative stress levels [23,24]. Therefore, precise imaging of ONOO™
can be used to differentiate Hashimoto’s thyroiditis against thyroid
carcinoma. So far, a variety of methods for detecting ONOO™ have been
reported, such as electrochemical and microbial methods [25,26].
However, most of these methods may cause cell or tissue damaged and
prevent their further application. By contrast, fluorescent probes have
many advantages such as biocompatibility, non-invasive, high sensi-
tivity and visualization to monitor many physiological or pathological
processes in real time [27-29]. Near-infrared fluorophore (emission
region 650-1000 nm) shows a promising performance in biological
applications [30,31]. It can not only penetrate deeper tissues, but also
avoid the interference from bio autofluorescence [32,33]. While previ-
ous near-infrared fluorescence probes for the detection of ONOO™ have
some general limits, such as small stokes displacement, low fluorescence
intensity, short emission wavelength, and weak penetrating ability of
tissue, resulting in poor imaging results [34,35].

The bicyano-isoflurone near-infrared fluorescence probe has the
advantages such as near-infrared emission and large Stokes shift [36]. In
this paper, a ONOO— activated near-infrared fluorescence probe based
on dicyano-isoflurone is designed and synthesized which named
HNTC-HT. HNTC-HT has specific responding to ONOO—, rapid imaging
with near-infrared fluorescence emission characteristics in cell and vivo.

The sensing mechanism of HNTC-HT was studied by high performance
liquid chromatography (HPLC) and liquid chromatography-high reso-
lution mass spectrometry (LC-HRMS). ONOO™ removes the triflate unit
by affinity substitution reaction and restored HNTC-HT to fluorophore
HNTC-OH. As a conjugated bridge, naphthalene is more suitable for
constructing fluorophore with longer wavelength emission. Its photo-
physical properties are regulated by the type of n-bridge and the relative
positions of D and A, and the naphthalene bridging fluorophore has a
longer emission wavelength than the previous benzene bridging fluo-
rophore [36]. The fluorescence redshift of HNTC-OH, experimental
measurements and theoretical calculations have all confirmed its strong
ICT) process. HNTC-HT is the first ONOO™-responsive probe applied to
the in vivo differentiation of Hashimoto’s thyroiditis against thyroid
cancer. It exhibits the long emission wavelength at 737 nm, and also has
photostability, selectivity, cytotoxicity and biosafety. It can quantita-
tively detect ONOO ™ in the range of 0—45 pM. The detection limit can be
calculated as low as 0.29 pM by limit of detection (LOD) = 3c/k. In cell
experiments, HNTC-HT showed the advantage of effectively dis-
tinguishing inflammatory thyroid cells from various types of cancerous
thyroid cells. In addition, we established mouse models of thyroid
cancer and Hashimoto’s thyroiditis. By injecting HNTC-HT into mice
models, mice with Hashimoto’s thyroiditis were successfully lit up,
while the mice with thyroid cancer were not lit up. Thus, the potential of
HNTC-HT was confirmed for sensitive discrimination Hashimoto’s
thyroiditis from thyroid cancer, and the diagnosis accuracy was
increased.

2. Experimental section
2.1. Materials and instruments

All relevant reagents and instruments have been described in the
Supporting Information. Fluorophore HNTC-OH was synthesized and
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Fig. 1. (A) Synthesis process of HNTC-HT. (B) Proposed response mechanism toward ONOO™ of HNTC-HT. (C) DFT-calculation results for HNTC-OH and HNTC-HT.

(D) Response mechanism of HNTC-HT to ONOO™ verified by LC-MS.

characterized by existing methods and the specific structural de-
scriptions are also shown in Supporting Information.

2.2. Synthesis of HNTC-HT

Figs. S1-S4 show the necessary spectra of compound 1 and HNTC-OH
(including 'H NMR and MS spectra). The synthesis of HNTC-HT is shown
in Fig. 1A. In N3 atmosphere, HNTC-OH (290 mg, 1 mmol) was dissolved
in 10 mL of mixed solvent (pyridine/CH2Cly, 1:1), cooled in an ice bath
for 10 min, then slowly added trifluoromethanesulfonic anhydride
(282 mg, 1 mmol) and stirred at room temperature for 30 min. The
yellow product was purified by silica gel column chromatography using
CH,Cl,/MeOH (v/v, 100:1) as eluent. 'H NMR (300 MHz, CDCls): §8.16
(tq,J=7.7,2.3Hz,2H),7.82 — 7.65 (m, 4 H), 7.51 (d, J= 8.2 Hz, 1 H),
7.07 (d, J =15.9 Hz, 1 H), 6.93 (s, 1 H), 2.63 (d, J = 18.1 Hz, 4 H), 1.14
(s, 6 H). '3C NMR (75 MHz, CDCl3) 5 168.92, 152.77, 146.16, 133.90,
133.47, 132.43, 131.67, 128.08, 126.59, 124.73, 124.69, 123.89,
123.65, 121.63, 117.70, 113.15, 112.39, 42.98, 39.36, 32.08, 28.05.
HR-MS (m/z): Calculated for [CosHpoF3N203S] T: 475.3206, found:
475.3206 (Figs. S5-S7).

2.3. Spectrophotometric measurement

HNTC-HT was dissolved using dimethyl sulfoxide (DMSO) to obtain
an initial solution (1.0 mM). Then in the spectral experiment, HNTC-HT
(5.0 pM) was stored in phosphate buffered saline (PBS) buffer, and
added ONOO™ at 37 °C for 40 min.

2.4. Cell culture and fluorescence imaging

Nthy-ori3-1, 8305 C, FTC, TT cells were incubated in DMEM con-
taining 10 % FBS. The cells were cultured in an incubator with a con-
stant temperature humidifier at 37 °C, 5 % CO2/95 % air. The nutrient
medium was removed, and the cells were washed three times for further
imaging. Fluorescence images of the above cells were acquired with
fluorescence inversion microscopy. Additional materials and methods
were described in the Supporting Information.

2.5. Fluorescence imaging in thyroid cancer and Hashimoto’s disease
models of mice

The animal experiment was carried out under the ethical protocols
set by Jilin University’s Institutional Animal Care and Use Committee
(IACUC), certified by ethical inspection permit number SY202409008.
Hashimoto’s thyroiditis mice models were established as following:
First, water-in-oil emulsion was prepared by homogenizing porcine
thyroglobulin (PTg) with complete Freund’s adjuvant (CFA) at 1:1 (v/v)
ratio to achieve final PTg concentration of 0.25 mg/mL. The resulting
emulsion was administered at multiple injection points underneath the
dorsal skin of the nude mice at a total dose of 50 pg/animal. The in-
jections were performed once per week over a two-week period.
Beginning at the third week, the water-in oil emulsion was replaced by
mixing porcine thyroglobulin (PTg) with incomplete Freund’s adjuvant
(v/v, 1:1) to a final concentration of 0.25 mg/mL and dosage for 3
weeks. The resulting emulsion was administered at multiple injection
points at a total dose of 50 pg/animal, as well. The injection sites
included the subcutaneous dorsal, neck and abdominal cavity regions.
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Fig. 2. (A) Absorption spectra of HNTC-HT (1 mM) before and after reaction with 1 mM ONOO™. (B) Fluorescence spectra of HNTC-HT before and after reaction
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Concurrently, nude mice were provided with high iodine content
(0.63 mg/mL). And histological sections of mouse thyroiditis have been
made to demonstrate the successful establishment of the inflammation
(Fig. S8). Meanwhile, the cancer cells (8305 C) suspension was subcu-
taneously injected into the thyroid gland of mice, and the tumors were
allowed to grow for approximately 3 weeks. At first, nude mice were
anesthetized with isoflurane gas and then injected with HNTC-HT
(20 pM, 50 pL) subcutaneously on the right side of the nude mice. Im-
aging is performed separately at specified time intervals to obtain
fluorescence responses. Then the mice were randomly divided into
control group, Hashimoto’s disease (HT) group and thyroid cancer
group. HNTC-HT was injected into the above three groups of mice, and
the fluorescence imaging results of the three groups were recorded at the
imaging time.

3. Results and discussion
3.1. Design, synthesis and reaction mechanism of HNTC-HT

The detailed synthesis route of HNTC-HT is shown in Fig. 1A. HNTC-
OH fluorophore is donor-n-acceptor (D-n-A) type fluorophore with hy-
droxyl group as D, naphthalene as n bridge and dicyano-isoflurone as A.
Naphthalene, as a conjugated bridge, is more suitable for constructing
fluorophore with longer-wavelength emission, so it is selected as the
fluorophore to prepare the probe HNTC-HT. HNTC-OH exhibited a
strong ICT process due to the typical D-n-A structure [37,38]. As a strong
electron-withdrawing group, the trifluoromethanesulfonic acid group
can effectively interrupt the ICT process of HNTC-OH, resulting in
fluorescence quenching (Fig. 1C). HNTC-HT reacts nucleophilic ally
with ONOO™, and the triflate unit is replaced. Thus, fluorescence

effectively recovered (Fig. 1B). Meanwhile, the response mechanism
between HNTC-HT and ONOO™ was further proved by LC-MS (Fig. 1D).

3.2. Spectral response

In PBS/DMSO solution, the UV absorption spectra of HNTC-HT
before and after reaction with ONOO™ were studied. As shown in
Fig. 2A, when ONOO™ (45 pM) was added, the absorption spectra of
HNTC-HT at 381 nm is significantly redshifted to 665 nm. And the
fluorescence emission spectrum at 737 nm is significantly increased,
which indicates that HNTC-HT effectively response to ONOO™ (Fig. 2B).
Then, we investigated the ability of HNTC-HT for detecting ONOO™. In
the fluorescence titration experiment, after gradually adding ONOO™
(0-50 pM), the new fluorescence peak at 737 nm significantly enhanced
(Fig. 2C). Meanwhile, the fluorescence signal intensity at 737 nm
showed a good linear relationship with ONOO™ in the concentration
range of 1-45 pM, and the linear equation is y = 2.5040x + 16.5652, R>
=0.9962, r = 0.9981 (Fig. 2D). We further test the time-dependent
emission response of HNTC-HT to ONOO™. As illustrated in Fig. 2E,
the fluorescence intensity of HNTC-HT enhanced rapidly, and the re-
action reached a plateau within 30 min, indicating that the probe HNTC-
HT can response to ONOO™ efficiently and quickly. Meanwhile, the
selectivity of the HNTC-HT on different interfering substances was
further investigated. The interfering substances include ion, common
amino acid, enzyme and reactive oxygen such as Fe?*, K*, Na*, Cu®,
Mn?*, Ca®t, Zn?t, Pb2*, Asp, Met, B-Glu, CES1, CES2, Alp, Cys, AChE,
BChE, CIO™, Hy0O, and O3. After incubation of HNTC-HT with them for
30 min, the fluorescence signal was very weak compared to ONOO™
(Fig. 2F). Therefore, HNTC-HT can selectively detect ONOO™ in dy-
namic and complex organisms.
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Fig. 3. In vitro fluorescence imaging in living cells with different treatments before incubation. (A) (a) Intact cells; (b) Cells pretreated with LPS (10 pg/mL) for 12 h;
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We also evaluated the light stability of HNTC-HT before and after its
response to ONOO ™. Under continuous excitation, the fluorescence in-
tensity of the solution was almost unaffected, indicating that HNTC-HT
has excellent photostability (Fig. S9). At the same time, we also verify
that the response ability of the probe is not affected in the temperature
range of 23-42 °C (Fig. S10). In addition, we further investigated the
imaging capabilities of HNTC-HT in different pH buffer solutions
(Fig. S11). In the absence of ONOO, it exhibits low fluorescence in-
tensity in the pH range of 6-9. While after the addition of ONOO™, the
HNTC-HT exhibited strong fluorescence at 737 nm in the pH range of
6-9. The experimental phenomenon shows that HNTC-HT is effective
under physiological pH conditions. All these Above results indicate that
HNTC-HT has the ability to specifically detect ONOO™ under complex
physiological conditions and great practical application value in com-
plex cellular environments and even in living organisms.

3.3. Imaging of ONOO™ in living cells

Based on above assay results of complex physiological conditions, we
continue to explore the feasibility of detecting ONOO™ in living cells.
First, we performed hemolysis test assay and Cell Counting Kit-8 (CCK-
8) to investigate the cytotoxicity of the HNTC-HT. HNTC-HT exhibited
excellent biocompatibility (Fig. S12). As shown in Fig. S13, the cell
survival rate remained above 80 % even at high concentrations of the
HNTC-HT. These results indicated the biosecurity of probe. Then we
investigated the ability of HNTC-HT to image endogenous ONOO™ in
living cells. Following 30 min co-incubation with the probe, cells
exhibited stabilized fluorescence intensity (Fig. S14). As shown in
Fig. 3A, Nthy-ori3-1 cells (a cell line derived from normal human thy-
roid tissue) treated with HNTC-HT showed a weak fluorescence signal,
indicating that the content of ONOO™ was relatively low under normal
conditions, then the fluorescence intensity increased significantly after
incubation with lipopolysaccharide (LPS) to induce inflammatory
response for 12 h. At the same time, in order to eliminate the potential
interference caused by other biological oxidants and nucleophiles in the
organism, further selective determination was performed in the
cells-H,05 and SO% are selected as oxidant and nucleophile to further
evaluate its anti-interference. When the cells were pretreated with H,O5
or SO%, only weak fluorescence was observed, in contrast to the sig-
nificant fluorescence enhancement observed when the cells were treated
with LPS. Meanwhile, in the presence of UA (ONOO™ inhibitor), intra-
cellular fluorescence was significantly lowered. The intracellular selec-
tivity experiments proved that HNTC-HT was only responsive to ONOO™
specifically in living cells. In addition, the fluorescence intensity of the
cells gradually increased with the increase of the concentration of LPS
used to pretreat the cells in Fig. 3B. These results indicated that HNTC-
HT can image ONOO™ in living cells accurately.

Next, we compared fluorescence intensity of the cells induced by
endogenous inflammation with three thyroid cancer subtypes: undif-
ferentiated carcinoma of thyroid gland (8305 C), follictalar thyroid
carcinoma (FTC) and medullary thyroid carcinoma (TT). As shown in
Fig. 3C, the fluorescence intensity of inflammatory thyroid cells was
significantly stronger than that of normal thyroid cells Nthy-ori3-1, and
also stronger than that of three other thyroid cancer subtypes. This
finding implied that HNTC-HT could effectively differentiate inflam-
matory thyroid cells from carious major thyroid cancer cells. Thus, it has
great potential applications in differentiating thyroiditis tissue against
thyroid cancer tissue.

3.4. Imaging of normal mice, HT mice, and thyroid cancer mice in vivo

In order to further verify the ability in differ entail diagnosis of
thyroid diseases with HNTC-HT, we established mice models of Hashi-
moto’s thyroiditis and thyroid cancer. As shown in Fig. 4A, B and C, the
thyroid site of the Hashimoto’s thyroiditis mice showed a significantly
stronger fluorescence signal after HNTC-HT injection. In contrast, mice
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with thyroid cancer and normal mice showed only weak fluorescence
signals. This is consistent with the results from the cell experiments
described above. After the extended time period, a slight increase in the
fluorescence signal was observed in the same group of mice. Although
the fluorescence signals of these three kinds of mice were slightly
stronger with the extension of time, the difference of the overall fluo-
rescence signals remained stable, which indicated that HNTC-HT had
strong anti-interference ability in mice. Moreover, as shown in Fig. 4D,
the fluorescence intensity of thyroid cancer tissue was also significantly
weaker than the fluorescence of inflammatory thyroid tissue. Mean-
while, the fluorescence signals of heart, liver, spleen, lung, and kidney
could be ignored, indicating that thyroiditis tissue tumor could be
distinguished against thyroid cancer through the reaction of high
expression of ONOO™ with HNTC-HT in vivo. H&E staining of tissue
sections (Fig. 4E) showed that no significant organ damage in major
organs of mice after injecting HNTC-HT, which confirmed the biosafety
of the probe. And the control experiments with DMSO/PBS injections in
normal mice confirmed the absence of background fluorescence, sys-
tematically eliminating solvent interference in our imaging results
(Fig. S15).

4. Conclusion

In summary, we have constructed a NIR-fluorescent probe HNTC-HT
with a large Stokes shift, which are used for differentiated imaging of
Hashimoto’s thyroiditis against thyroid carcinoma by endogenous
ONOO™. HNTC-HT was synthesized with dicyano-isoflurone. ONOO™
removes the trifluoromethanesulfonic acid group from the probe by
nucleophilic substitution reaction and generates fluorescence signal by
restoration of ICT process. In spectroscopic experiments, HNTC-HT can
respond to ONOO™ within 5 min, and the fluorescence intensity is
finally enhanced 7-8 times. It also has excellent sensitivity and selec-
tivity for ONOO™ detection in various biological oxidants and nucleo-
philic reagents. Moreover, it could be used to monitor endogenous
ONOO™ by inverted fluorescence microscope with excellent perfor-
mance in cell and tissue imaging. Furthermore, HNTC-HT was first time
to visualize the inflammatory thyroid cells related to ONOO™ levels in
mice and differentiate Hashimoto’s thyroiditis tissue against cancerous
tissue sensitively and rapidly. Taken together, the novel probe HNTC-HT
exhibits significant ability in differentiating imaging Hashimoto’s
thyroiditis from thyroid cancer both in vitro and in vivo, thereby
enhancing the accuracy of thyroid disease diagnosis.
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