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ARTICLE INFO ABSTRACT

Keywords: Colitis is a known risk factor for the development and progression of colorectal cancer. Excessive inflammation is
Fluc‘>r.escence probe a key feature of inflammatory bowel disease (IBD), which is closely linked to colorectal cancer onset. Early and
Colitis . accurate diagnosis of colitis and colorectal cancer is therefore essential for effective intervention. This study
ﬁ?lteygizhdmesmrase presents a novel fluorescence probe, NR-BChE, for the detection of butyrylcholinesterase (BChE) activity. NR-

BChE is composed of a hydroxyl Nile Red fluorophore and a BChE-recognition group, cyclopropyl formyl
chloride. The probe functions through an intramolecular charge transfer (ICT) mechanism. Upon hydrolysis by
BChE, a strong electron donor hydroxyl group is released, the ICT is enhanced and the fluorescence intensity is
increased, leading to the emission of red light (Ae;y = 690 nm). The probe has several advantageous properties,
including a large Stokes shift (110 nm), low detection limit (0.024 U/L), high selectivity and sensitivity, and
excellent biocompatibility. Cellular imaging demonstrated that NR-BChE could effectively detect the elevated
BChE levels in colorectal cancer and colitis cells. In vivo imaging further revealed that NR-BChE could differ-
entiate normal mouse model from colitis and colorectal cancer mouse models, and evaluate the therapeutic
efficacy of four colitis treatment methods. NR-BChE is a new molecular tool for the early diagnosis of colitis and
colorectal cancer. It has high potential in the monitoring of disease progression and the evaluation of therapeutic
outcomes in clinical settings.

Therapeutic evaluation

1. Introduction blood or lymphatic system to distant organs, including the liver, lungs,

and bones, resulting in metastatic lesions that complicate treatment

Colitis is a disease characterized by intestinal inflammation, mani-
festing as damage to the intestinal mucosa and infiltration of inflam-
matory cells [1]. Chronic colitis can lead to persistent tissue damage and
abnormal proliferation of ulcerated intestinal surfaces, which signifi-
cantly increases the risk of intestinal polyps and colorectal cancer [2-4].
The progression and complications of colitis necessitate early diagnosis
and precise monitoring methods to guide effective therapeutic in-
terventions [5]. Colon cancer, a prevalent malignancy of the digestive
tract, poses serious health risks. Patients often experience symptoms
such as intestinal dysfunction, abdominal pain, diarrhea, constipation,
and hematochezia. In addition, cancer cells may disseminate via the

* Corresponding authors.
E-mail addresses: mapinyi@jlu.edu.cn (P. Ma), songdq@jlu.edu.cn (D. Song).

https://doi.org/10.1016/j.microc.2025.113014

strategies [6-8]. However, traditional diagnostic methods, such as
endoscopy and biopsy, are invasive, time-consuming, and unable to
provide real-time insights into the dynamic processes of disease pro-
gression [9,10]. These limitations highlight the need for non-invasive,
sensitive, and specific diagnostic tools, while fluorescence probe tech-
nology is a promising alternative that can meet these needs.
Fluorescence probe technology is widely recognized for its high
sensitivity, selectivity, and real-time imaging capabilities [11-15]. Its
application in inflammatory diseases such as colitis has opened new
avenues for disease diagnosis, therapeutic monitoring, and evaluation of
treatment efficacy. Researchers can utilize fluorescence probes that can
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Fig. 1. The synthesis process of NR-OH and NR-BChE.

specifically bind to inflam Synthesis of NR-OH:matory biomarkers for
real-time imaging and quantitative analysis of inflammatory activity in
vivo [16-20]. Such probes also enable precise tracking of drug delivery
and release to provide insights into the pharmacodynamics of thera-
peutic agents [21,22]. Emerging research has identified butyr-
ylcholinesterase (BChE) as a potential biomarker of colitis, given its role
in modulating inflammation through the cholinergic signaling pathway
[23-27]. This discovery not only advances our understanding of colitis
pathology but also provides a novel target for diagnostic and therapeutic
applications.

Despite these advancements, the design and application of fluores-
cence probes for colitis remain a bottleneck. Improving the sensitivity
and selectivity of these probes is crucial for their broader adoption and
clinical utilization [28]. To address these challenges, we synthesized a
novel near-infrared fluorescence probe, NR-BChE, using the high
quantum yield dye NR-OH as the fluorophore and BChE as the target.
The probe emitted light in the near-infrared region (690 nm), which is a
spectral range suitable for in vivo imaging due to its deep tissue pene-
tration and low background autofluorescence [29]. NR-BChE had high
sensitivity and selectivity for BChE and superior lipid droplet-targeting
capabilities due to its NR-OH-based structure. Increasing evidence in-
dicates that lipid droplets, organelles in lipid storage and metabolism,
are critical players in inflammation [30-32]. With its lipid droplet-
targeting ability, NR-BChE could precisely detect inflammatory pro-
cesses in the intestinal environment. In addition to its diagnostic po-
tential, NR-BChE could be employed to monitor therapeutic responses.
The probe could measure both exogenous and endogenous BChE,
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allowing for a comprehensive evaluation of inflammation dynamics and
drug efficacy in colitis mouse models. With its ability to provide real-
time visualization of BChE activity, NR-BChE facilitates a better un-
derstanding of the interplay between therapeutic agents and inflam-
matory pathways. NR-BChE is a versatile tool for advancing both basic
research and clinical management of colitis.

2. Experimental procedure
2.1. Organic synthesis

The synthesis process of NR-OH and NR-BChE is illustrated in Fig. 1.

Synthesis of NR-OH: Compound 1 was synthesized using a previ-
ously reported method [33]. Compound 1 (330 mg, 2 mmol) and 2,6-
dihydroxynaphthalene (385 mg, 2.4 mmol) were dissolved in 3 mL of
DMF. The reaction mixture was stirred at 150 °C overnight under an
inert gas atmosphere. Upon completion, the reaction was cooled to room
temperature. Subsequently, 50 mL of saturated saltwater was added to
the reaction, followed by ethyl acetate to extract the organic layer. The
organic phase was separated, dried with anhydrous sodium sulfate, and
concentrated under reduced pressure. The crude product was further
purified by silica gel column chromatography using petroleum ether:
ethyl acetate (3:1) as the eluent. The purified product NR-OH (a dark red
solid) was obtained with a 30 % yield. 1H NMR (600 MHz, DMSO-dg) 6§
8.21 - 8.13 (m, 2H), 7.61 (d, J = 9.1 Hz, 1H), 7.47 (dd, J = 8.5, 2.4 Hz,
1H), 6.84 (dd, J =9.1, 2.7 Hz, 1H), 6.66 (d, J = 2.7 Hz, 1H), 6.27 (s, 1H),
3.53 - 3.47 (m, 4H), 1.17 (t, J = 7.1 Hz, 6H) (Fig. S1). 13C NMR (151
MHz, CDCl3) 6§ 182.02, 161.07, 152.07, 151.14, 146.88, 139.18, 134.21,
131.28,127.93, 124.32, 124.1, 118.82, 110.35, 108.56, 104.55, 96.51,
44.88, 12.91 (Fig. S2). HR-MS (m/2): Calculated for [CyoH;9N2O3]™:
335.1390, found: 335.1386 (Fig. S3).

Synthesis of NR-BChE: NR-OH (100 mg, 0.3 mmol) was dissolved in
anhydrous acetonitrile in a reaction vessel. The solution was placed in
an ice bath, and after triethylamine (100 pL, 0.7 mmol) of was added,
the mixture was continuously stirred for 5 min. After that, cyclopropyl
formyl chloride (100 pL, 1.0 mmol) was added dropwise to the reaction
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Fig. 2. (A) UV-Vis absorption spectra of NR-BChE (10 pM), the reaction system, and NR-OH (10 pM). (B) Fluorescence spectra of NR-BChE (10 pM), the reaction
system, and NR-OH (10 pM). (C) Fluorescence spectra of NR-BChE (10 pM) in the presence of BChE at various concentrations. (D) Linear relationship between
fluorescence intensity at 690 nm and BChE concentration (0-30 U/L). (hex = 580 nm).
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Fig. 3. Molecular docking simulation results showing interactions between NR-BChE and BChE.

mixture. After the addition was complete, the mixture was left to stand
until the temperature reached room temperature. After that, it was
continuously stirred for an additional hour. Once the reaction was
complete, the solvent was remo ved under reduced pressure to
concentrate the mixture. The crude product was further purified by
silica gel column chromatography using petroleum ether:ethyl acetate
(3:1) as the eluent. The purified compound NR-BChE (a purple solid)
was obtained with a 56 % yield. 1H NMR (600 MHz, DMSO-dg) 6 8.21 -
8.13 (m, 2H), 7.61 (d, J = 9.1 Hz, 1H), 7.47 (dd, J = 8.5, 2.4 Hz, 1H),
6.84 (dd, J=9.1, 2.7 Hz, 1H), 6.66 (d, J = 2.7 Hz, 1H), 6.27 (s, 1H), 3.52
- 3.49 (m, 4H), 2.00 - 1.96 (m, 1H), 1.17 (t, J = 7.1 Hz, 6H), 0.60 (m,
2H), 0.47 (m, 2H) (Fig. S4). '3C NMR (151 MHz, CDCl5) 5 181.5, 173.18,
153.31,152.6,151.57, 147.07,137.87, 133.56, 131.55, 129.20, 127.51,
124.72,124.17,116.27,110.93, 104.76, 96.46, 44.98, 12.92, 9.73, 6.56
(Fig. S5). HR-MS (m/z): Calculated for [Co4H3N2O41": 403.1652,
found: 403.1650 (Fig. S6).

2.2. Preparation of samples for spectrophotometric analysis

A stock solution of NR-BChE (1 mM in DMSO) was prepared and
stored in a light-protected environment at —40 °C. BChE was dissolved
in sterilized water to a final concentration of 50 pg/mL and stored at
—80 °C for future use. For spectrophotometric analysis, the NR-BChE
stock solution was further diluted in phosphate-buffered saline (PBS,
pH 7.4, 10 mM). Appropriate volumes of the BChE solution were added
to the NR-BChE solution to achieve the desired final concentrations. The

total volume of PBS, NR-BChE, and BChE in each sample was maintained
at 300 pL. A control group was prepared under the same conditions
without the addition of BChE. All samples, including the control, were
incubated on a shaker at 37 °C for 2 h. After incubation, fluorescence
emission spectra and UV-visible absorption spectra of the samples were
recorded at 37 °C using a 1-cm quartz cuvette, and the data were used
for subsequent in vitro assays.

2.3. Cell imaging

Fluorescence imaging of NCM460 and SW620 cells: NCM460 and
SW620 cells were incubated with the probe NR-BChE for various dura-
tions, and changes in fluorescence signal were observed over time.
Fluorescence imaging was performed at different time points, and the
dynamic variations of fluorescence signals were evaluated.

Co-localization experiment: A co-staining experiment was con-
ducted to confirm the subcellular localization of NR-BChE. SW620 cells
were co-incubated with NR-BChE (20 pM) and the commercial dye
BODIPY (20 nM) for 90 min. Fluorescence imaging was performed, and
the overlap between the probe and the lipid droplet-targeting dye was
observed.

Detection of BChE in inflammatory cells: The LPS-induced in-
flammatory response was assessed by treating NCM460 cells with lipo-
polysaccharide (LPS, 1 pg/mL) for 1 h to induce an inflammatory state,
followed by incubating with NR-BChE (10 pM) for 90 min before fluo-
rescence imaging. For Iso-OMPA treatment, NCM460 cells were
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Fig. 4. Fluorescence images of NR-BChE (10 pM) in NCM460 cells (A) and SW620 cells (B) captured at different time periods (Left) and the corresponding mean

intracellular fluorescence intensity (Right).
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Fig. 5. Co-localization of NR-BChE and BODIPY with lipid droplets.

pretreated with iso-OMPA (1 mM), a BChE inhibitor, for 1 h, followed by
incubation with NR-BChE (10 pM) for 90 min before fluorescence im-
aging. For hydrocortisone treatment, NCM460 cells were treated with
hydrocortisone (1 mM) for 1 h, followed by incubation with NR-BChE
(10 pM) for 90 min before fluorescence imaging.

2.4. In vivo imaging of colitis and colon cancer mouse models

All animal experiments were conducted in compliance with the
ethical guidelines approved by Institutional Animal Care and Use
Committee (IACUC) of Jilin University, under ethical permit number
5Y202409006.

Establishment of colitis mouse model: A colitis model was
established by administering nude mice with 5 % dextran sulfate sodium
(DSS) through drinking water for 7 consecutive days. The successful

development of colitis was monitored through weight loss and bloody
stools.

Establishment of tumor-bearing mouse model: Five-week-old
specific pathogen-free (SPF) nude mice were housed individually in
ventilated cages and fed with standard SPF-grade laboratory chow and
water. A suspension of SW620 cells (2 x 107 cells in culture medium)
was subcutaneously injected into the mice to establish xenograft tumors.
The tumors were allowed to grow until their volume reached approxi-
mately 200 mm?.

Treatment groups: To evaluate therapeutic responses, mice were
divided into various treatment groups, and each was administered with
the following drugs daily for one week: mesalazine, cyclosporine,
BuPiYiChang pills, and FuFang XianHeCao Changyan Pian. Each drug
was administered at a volume of 100 pL (16 mM) via oral gavage.

3. Results and discussion
3.1. Probe design and spectral performance

A near-infrared fluorescent probe, NR-BChE, was designed and syn-
thesized. The probe consisted of two key components: the fluorophore
(NR-OH) and the BChE-recognition group (cyclopropyl formyl chloride)
[25,26,34]. The NR-OH fluorophore emits strong fluorescence, whereas
NR-BChE exhibits weak fluorescence due to suppression of the intra-
molecular charge transfer (ICT) process [35,36]. This suppression arises
from the conjugation of cyclopropyl formyl chloride to the hydroxyl
group of the fluorophore, which reduces its electron donor capacity.
Upon binding to BChE, the probe undergoes enzymatic cleavage,
releasing the fluorescent NR-OH.

To study the spectral properties of the probe, the changes in its
UV-Vis absorption spectra before and after reacting with BChE at
varying amounts were examined. As shown in Fig. 2A, in the absence of
BChE, the absorption peak at 580 nm of the probe was negligible. After
the addition of BChE, the absorption intensity of the peak at 580 nm
increased significantly, and the intensity increased proportionally with
enzyme concentration. The peak at 580 nm indicates the formation of
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Fig. 6. Fluorescence images of NCM460 cells treated with LPS (1 pg/mL), iso-OMPA (1 mM), or HC (1 mM) for 1 h, followed by NR-BChE (10 pM) for 90 min (Left)

and the corresponding mean intracellular fluorescence intensity (Right).

NR-OH during the enzymatic reaction. The fluorescence spectra of the
probe before and after reacting with BChE were analyzed. At an exci-
tation wavelength of 580 nm, the fluorescence intensity at 690 nm
markedly increased after the reaction (Fig. 2B). This confirms that a
substantial amount of the fluorescent group was formed after the probe
reacted with the enzyme.

Further investigation into the fluorescence intensity at 690 nm was
conducted by introducing BChE (0-100 U/L) at varying concentrations
into the reaction system. The fluorescence intensity was observed to
increase progressively with the increase in BChE concentrations,
reaching the value 4.68 times higher compared to the control (without
BChE) at 100 U/L (Fig. 2C). The fluorescence intensity at 690 nm
showed a strong linear relationship with BChE at the concentration
range of 0-30 U/L, with a correlation coefficient of R> = 0.996. This
demonstrates the probe’s ability to accurately quantify BChE via fluo-
rescence detection (Fig. 2D). The detection limit of the probe, calculated
based on a 3S/N criterion, was 0.024 U/L. It was lower than the BChE
probes in previously reported (Table S1). This shows that the probe has
high sensitivity and potential for precise enzymatic analysis [37-41].

To elucidate the interaction mechanism between the fluorescent
probe NR-BChE and BChE, molecular docking simulations were per-
formed. As shown in Fig. 3, NR-BChE forms three hydrogen bonds with
GLY117, SER198, and HIS438 in BChE, along with several other weak
interactions. These interactions indicate a strong binding affinity be-
tween the probe and BChE. The low binding energy of —9.4 kcal/mol
further confirms the high stability and specificity of the interaction.

3.2. Optimization of spectral properties

The optimization of reaction parameters such as time, pH, and
temperature is essential to ensuring the reliability and applicability of
the probe in biological systems. These factors influence the efficiency of
the probe-enzyme interaction and fluorescence response, as well as the
compatibility of the probe with physiological conditions.

Reaction time can directly affect the fluorescence signal and deter-
mine the real-time monitoring efficiency of the probe. The fluorescence
intensity increased gradually over time, reaching its peak value at 80
min. Beyond this point, the fluorescence intensity remained stable,
indicating that NR-Bche possesses good stability and is resistant to
decomposition under continuous excitation light irradiation (Fig. S7).
Thus, we may conclude that 80 min is the optimal reaction time.

pH plays a vital role in maintaining the stability of the probe and the
activity of the enzyme. Fluorescence intensity was analyzed at various
pH values. Although the fluorescence signal was not the strongest at pH
7.4, we chose this pH because it reflects the physiological pH (Fig. S8).
By selecting pH 7.4, we ensure that the probe can function effectively.
This pH also mimics the environment of living organisms.

Temperature is another crucial parameter impacting the enzymatic
activity and probe stability. The reaction system was carried out at

temperatures of 25 °C, 30 °C, 35 °C, 37 °C, 40 °C, and 45 °C. At 37 °C,
although the fluorescence intensity was not the highest, it allows
adequate probe-enzyme interaction and aligns with the physiological
temperature (Fig. S9). Therefore, 37 °C was selected as the optimal re-
action temperature.

The ability of a fluorescent probe to selectively detect its target in
complex biological environments is critical for ensuring accurate and
reliable measurements. In biological systems, the presence of numerous
ions, amino acids, and enzymes can interfere with the probe’s perfor-
mance. To assess the specificity of NR-BChE to its target, the response of
the probe to 49 common cations, anions, amino acids, and enzymes was
evaluated. As shown in Fig. S10, the fluorescence response of the probe
to 49 interfering substances was negligible compared to the response to
BChE. This indicates that NR-BChE is not influenced by other biological
factors and can selectively detect BChE. These findings underscore the
high specificity of NR-BChE to BChE, showing that it is a reliable tool for
BChE detection in complex biological environments.

3.3. Cellular imaging

To understand the relationship between BChE and colorectal cancer
cells, we evaluated the impact of the probe on cell viability to ensure its
suitability for subsequent experiments. Cytotoxicity of the probe was
assessed using the CCK-8 assay. As shown in Figure S, the viability of
NCM460 cells incubated with NR-BChE at different concentrations (0,
10, 20, 30, 50, 100 uM) for 24 h exceeded 90 %. This result indicates that
even at high concentrations, NR-BChE does not significantly impact cell
viability, which is demonstrative of its low cytotoxicity and suitability in
subsequent cellular imaging experiments.

The endogenous levels of BChE in different cell lines were examined
using NR-BChE. As shown in Fig. 4A, red fluorescence was observed in
NCM460 cells incubated with NR-BChE, and the fluorescence intensity
increased over time, reaching the maximum value at 90 min. This in-
dicates the presence of endogenous BChE in NCM460 cells and high-
lights the excellent cell permeability and ability to detect intracellular
BChE activity of the probe. Similarly, SW620 cells incubated with NR-
BChE exhibited higher fluorescence intensity compared to NCM460
cells (Fig. 4B). This suggests an overexpression of BChE in SW620 cells
and demonstrates the NR-BChE probe’s capacity to monitor the varia-
tions of BChE levels across cell types.

To explore the subcellular localization of the probe, a co-localization
experiment was conducted using the lipid droplet-targeting dye BODIPY
[42]. Hydroxyl Nile Red, the core structure of NR-BChE, is known for its
lipid droplet-targeting capability [43]. As shown in Fig. 5, the red
fluorescence of NR-BChE significantly overlapped with the green fluo-
rescence of BODIPY with a Pearson correlation coefficient of 0. 968. This
confirms that NR-BChE predominantly localizes in the lipid droplets,
which is consistent with the findings reported in the literature [44]. This
also demonstrates the potential of this probe as a lipid droplet-targeting
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Fig. 7. (A-C) Fluorescence images of normal mouse (A), colorectal cancer mouse (B), and colitis mouse (C). (D-G) Fluorescence images of colitis mice. (H-K)
Fluorescence images of colitis mice after treatment with four drugs: mesalazine, cyclosporine, BuPiYiChang pills, and FuFang XianHeCao Changyan Pian (from left to
right). (L) Ex vivo fluorescence images of dissected colons after treatment (from left to right: normal colon, mesalazine-, cyclosporine-, BuPiYiChang pills-, FuFang
XianHeCao Changyan Pian-treated colons, colitis). (M) Ex vivo fluorescence images of various organs (heart, liver, spleen, lungs, kidneys) and tumor tissue. (N-S)
H&E-stained histological images of colons (from left to right: normal colon, mesalazine-, cyclosporine-, BuPiYiChang pills-, FuFang XianHeCao Changyan Pian-

treated colons, colitis).

probe for biological applications. NR-BChE is the first probe localized in
a lipid drop compared with the BChE probes in previously reported
methods (Table S1).

The connection between inflammation and BChE expression was
further explored using NCM460 cells. Previous studies have reported a
link between inflammation and BChE production [24,45]. As shown in
Fig. 6, NCM460 cells treated with LPS, a BChE inducer, had the highest
fluorescence intensity, which is an indication of increased BChE activity
under inflammatory conditions. Treatment with the BChE activator iso-
OMPA resulted in a moderate increase in fluorescence intensity; how-
ever, the increase was less pronounced compared to LPS. Conversely, the
treatment with hydrocortisone (HC), a BChE inhibitor, led to a signifi-
cant decrease in fluorescence intensity, which reflects the reduction of
BChE activity. These results confirm that NR-BChE is highly sensitive to

changes in intracellular BChE activity, indicating that it can effectively
monitor the dynamic fluctuations in BChE levels.

In summary, NR-BChE can detect endogenous BChE activity, co-
localize with lipid droplets, and monitor BChE activity under inflam-
matory conditions. These findings show that NR-BChE is a powerful tool
for studying BChE-related activities and dynamics in biological systems.

3.4. In vivo imaging and therapeutic evaluation

Previous experiments demonstrated that the NR-BChE probe had
excellent spectral properties and was effective in detecting cellular
BChE. To extend its application to in vivo studies, the biocompatibility of
the probe was first assessed using hemolysis tests. As shown in Fig. S12,
the probe exhibited a low hemolysis rate, confirming its suitability for in
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vivo imaging applications. Following this, mouse models were con-
structed to investigate the probe’s in vivo performance. During the in-
duction of colitis using DSS, a gradual decline in mouse body weight was
observed, confirming the successful establishment of the colitis model
(Fig. S13B). Fluorescence imaging of normal, colitis, and cancer-bearing
mice was conducted (Fig. 7A-C). The results revealed slightly elevated
fluorescence intensity in cancer-bearing mice, with clear localization of
fluorescence in the dissected tumor tissues compared to other organs
(heart, liver, spleen, lungs, and kidneys) (Fig. 7M). The fluorescence
intensity of colitis mice was, however, significantly higher than that of
normal and cancer-bearing mice, an indication of an abnormally
elevated BChE expression level in colitis.

Given their high BChE expression, colitis mice was used in the
investigation of the therapeutic effects of different drugs. Four treatment
groups of mice were established, and each was administered with the
following drugs: mesalazine, cyclosporine, BuPiYiChang pills, and
FuFang XianHeCao Changyan Pian. As shown in Fig. 513, the treatment
led to a gradual improvement of colitis conditions, as reflected by the
partial recovery of body weight. To assess its effectiveness in monitoring
the treatment, the NR-BChE probe was injected into the mice, and
fluorescence imaging was performed. The results (Fig. 7D-K) demon-
strated a decrease in fluorescence intensity during the treatment, indi-
cating a reduction in BChE levels. Among all treatment groups,
mesalazine had the highest therapeutic effect, as reflected by its lowest
fluorescence intensity. Colon tissues from normal, colitis, and treated
mice were extracted and subjected to ex vivo fluorescence analysis
(Fig. 7L). The fluorescence intensity of normal mice was negligible.
Additionally, the fluorescence intensity of treated mice was lower
compared to that of untreated colitis mice, which is consistent with the
in vivo imaging results. These findings further corroborate the efficacy of
the therapeutic agents in ameliorating colitis. Histological analysis was
conducted to validate the successful establishment of the mouse models
and assess the therapeutic effects. As shown in Fig. 7N-S, colon tissue
sections from normal mice had normal morphology, while those from
colitis mice exhibited significant pathological changes. After drug
treatment, the pathological state of the colon tissue of colitis mice
gradually improved, approaching normal morphology. These histolog-
ical results align with the observed body weight recovery, confirming
the effectiveness of the four drugs in treating colitis.

These findings demonstrate that the NR-BChE probe can effectively
monitor the BChE expression levels in colitis and colorectal cancer
mouse models. The probe is suitable as a novel tool for evaluating the
therapeutic efficacy of colitis treatments. These results highlight the
potential of NR-BChE for in vivo studies of BChE-related diseases and
their treatments.

4. Conclusions

We successfully designed and developed an organic small-molecule
fluorescent probe, NR-BChE, for the selective detection of BChE activ-
ity. The probe could be recognized by BChE and trigger the release of the
fluorophore NR-OH, which caused the enhancement of ICT, leading to
the emission of red fluorescence (Aey, = 690 nm). NR-BChE had a large
Stokes shift (110 nm), and high selectivity, sensitivity, and biocompat-
ibility; thus, it is suitable for biological applications. Cellular imaging
experiments using the probe revealed elevated BChE expression levels in
colorectal cancer cells compared to normal cells. The probe could
effectively distinguish colorectal cancer cells from normal cells by
selectively labeling endogenous BChE and targeting lipid droplets in the
cells. These results underscore the potential of the NR-BChE probe as a
tool for differentiating between diseases at the cellular level. In vivo
imaging studies demonstrated that NR-BChE could clearly distinguish
between colitis and colorectal cancer mouse models. Furthermore, the
probe was used to evaluate the therapeutic efficacy of four different
drugs commonly used for the treatment of colitis. The results showed
that NR-BChE could sensitively monitor changes in BChE activity caused

Microchemical Journal 210 (2025) 113014

by the treatment, and mesalazine was found to provide the best thera-
peutic outcome. Overall, NR-BChE can be used as an innovative mo-
lecular tool for the early diagnosis of diseases related to colitis and
colorectal cancer and the evaluation of drug efficacy. The probe has
potential in clinical applications including the diagnosis and therapy of
colitis and colorectal cancer.
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