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A B S T R A C T   

Herein, a six-in-one peptide functionalized upconversion@polydopamine nanoparticle-based ratiometric fluo-
rescence sensing platform (termed as UCNP@PDA@Cy3-pep) has been fabricated for monitoring the anticancer 
efficacy of photothermal-chemotherapy in real time through detection of caspase-3 activity. In this work, the 
upconversion nanoparticle (UCNP) core of UCNP@PDA was employed as an internal reference, while the PDA 
shell of UCNP@PDA was used as an acceptor of fluorescence resonance energy transfer (FRET) system, photo-
thermal therapy (PTT) agent, loading agent of chemical drug and immobilization platform of Cy3 (donor of 
FRET) labeled peptide (Cy3-pep), which contains a specific caspase-3 substrate (DEVD) and active tumor- 
targeting motif (PSP). In the presence of caspase-3, the FRET system was broken through the enzymatic cleav-
age of DEVD, resulting in a recovery of Cy3 fluorescence emission. Under the optimal conditions, the ratio of 
recovered Cy3 fluorescence intensity with upconversion luminescent (UCL) intensity was linearly dependent on 
the caspase-3 concentration within the range of 0.5–50 ng mL− 1 and the limit of detection (LOD) was calculated 
as 0.065 ng mL− 1. Using mouse-bearing MG-63 tumor as a model system, the capability of as-proposed 
UCNP@PDA@Cy3-pep has been successfully demonstrated through a real-time noninvasive evaluation of 
tumor response to PTT and chemotherapy of staurosporine (STS).   

1. Introduction 

Tumor response to therapy is a critical issue in daily cancer man-
agement. In particular, the capability to monitor noninvasively the 
anticancer efficacy of treatment in real time that can have a significant 
effect on the outcome of therapy. Apoptosis, a major form of pro-
grammed cell death, is crucial for regulation of physiological circum-
stances and maintaining homeostasis. The monitoring of apoptosis is of 
great significance in not only many cytobiology and clinical in-
vestigations but also the anticancer efficacy of apoptosis-related thera-
pies [1–3]. Caspases are a family of cysteine-aspartic proteases playing a 
vital role in cell apoptosis, and their activities have been generally used 
as the key mediators of apoptosis. Among of the caspases, caspase-3 acts 
as a typical cellular biomarker in the irreversible process of cell 
apoptosis [4,5]. Hence, the cellular activity of caspase-3 is considered as 

one of the most important factors to assess the anticancer efficacy of 
treatment [6–8]. A variety of fluorescence resonance energy transfer 
(FRET)-based assays have been reported for monitoring caspase-3 ac-
tivity with high sensitivity in cancer cells [9–12]. However, most of 
these FRET-based assays are usually employed single functional probe 
only capable of caspase-3 activity detection, which may cause receiving 
signal delay due to the different distributions of detection probe and 
drug [13,14]. A smart sensing platform integrates antitumor therapy 
and caspase-3 activity detection, which enables to real-time evaluate the 
outcome of therapy activity in the tumor. Benefit from the rapid 
development of nanotechnology, nanoparticles/nanocomposites have 
been used to integrate molecular imaging and therapeutic capabilities 
into single systems (also known as theranostics) [15–17]. Because of 
their high tumor accumulation ability, active tumor-targeting nano-
particles can further improve the diagnosis and treatment effect of 
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tumor [18,19]. Although it has been made great progress in develop-
ment of theranostics, integration of multiple functionalities in one sys-
tem for real-time monitoring noninvasively anticancer efficacy is still an 
enormous challenge in bioanalysis and nanomedicines. 

Photothermal therapy (PTT) has been identified as a noninvasive 
method for tumor therapeutic due to its precise spatial-temporal selec-
tivity using conductive particles and minimum side effects on para- 
carcinoma tissues [20,21]. Detailed researches of molecular mecha-
nism confirmed that the photothermal treatments induce cell death by a 
programmed apoptosis through a mitochondria-mediated caspase-3 
activation pathway [22–24]. In addition, it is demonstrated that the 
synergistic interaction between PTT and CT can improve significantly 
the outcome of antitumor. However, there are currently few sensing 
systems with the ability to real-time self-monitor the synergistic anti-
cancer activity of PTT and chemotherapy in vivo. 

The lanthanide-doped upconversion nanoparticles (UCNPs) have 
been widely used in biomedical imaging because their special photo-
chemical properties, including robust photostability, minimal auto- 
fluorescence backgrounds and deep-tissue excitability under near- 
infrared (NIR) excitation, etc [25–30]. As a bioinspired polymer, poly-
dopamine (PDA) has been demonstrated as not only an excellent PTT 
agent but also an efficient carrier for loading aromatic chemotherapy 
drugs because it exhibits good biocompatibility and biodegradability 
[31], strong NIR absorbance [32], and larger surface area with plenty of 
functional groups [33]. The PDA can also be used as an efficient acceptor 
of FRET system since it has strong fluorescence quenching capacity 
[34–36] combine the advantages of PDA and UCNPs, which have 
attracted wide interest for diverse applications in bioanalytical and 
biomedical fields [37,38]. 

Herein, we developed a six-in-one peptide-functionalized 
UCNP@PDA-based fluorescent turn-on ratiometric sensing platform 
(termed as UCNP@PDA@Cy3-pep) for in situ evaluating noninvasively 
therapeutic efficacy of PTT and chemotherapy through monitoring 
caspase-3 activity in vitro and in vivo. The six-in-one sensing platform 
allows the implementation of the following functions: (i) the UCNP core 
was employed as an internal reference for UCL imaging. (ii) The FRET 
occurred between the PDA shell and Cy3. (iii) With the specific recog-
nition site DEVD in the peptide, the sensing platform can be used to 
detect caspase-3. (iv) The tumor-targeting ability was further improved 
by the PSP motif in the peptide besides the EPR effect of nanoparticles. 
(v) PDA was used as the photothermal therapy (PTT) agent. (vi) The 
loaded chemical drug (STS) was used as the chemotherapy agent. In the 
proof-of-principle, UCNP@PDA@Cy3-pep was used to study the tumor 
response to the PDA loaded STS (a clinical anticancer drug, see Fig. S1 in 
Supplementary information (SI) for molecular structure) under different 
conditions by using a mouse-bearing MG-63 tumor model. 

2. Experimental section 

2.1. Synthesis of Cy3-pep modified UCNP@PDA and STS loaded 
UCNP@PDA@Cy3-pep 

The preparation of NaErF4: Tm3+@NaYbF4@NaYF4: Nd3+ UCNPs 
(termed as Er@Yb@Y) and UCNP@PDA were prepared according to 
previously reported method [39,40]. For the preparation of 
UCNP@PDA@Cy3-pep, 0.04 mg Cy3 modified peptides (Cy3-pep, 
sequence, GGSDEVDRPSP-K(Ac)-C(Cy3)) in 3 mL Tris buffer (TB, 10 
mmol L− 1, pH 8.5) were reacted with different amounts of the 
as-prepared UCNP@PDA (0.1, 0.2, 0.5, 1 and 2 mg), respectively. After 
stirred vigorously in the dark at 25 ◦C for 12 h, UCNP@PDA@Cy3-pep 
were centrifuged repeatedly at 8000 rpm and redispersed in water. 
For loading STS, the UCNP@PDA@Cy3-pep (1 mg) were dispersed in 5 
mL TB and mixed with 2.5 mg mL− 1 STS in dimethyl sulfoxide solution 
(DMSO). After stirred vigorously for 20 h, the final products were 
centrifuged repeatedly at 8000 rpm and dissolved in phosphate buffered 
saline (PBS, 1 mL, pH 7.4). The nanocomposites were named as 

UCNP@PDA@Cy3-pep@STS. The loading weight of STS (W) onto the 
nanoparticles is calculated by deducting the STS in the supernatant from 
initial STS added according to the standard UV–vis curve of STS at the 
wavelength of 297 nm (i.e., W = Woriginal STS –WSTS in supernatant). 

2.2. Sensing application of UCNP@PDA@Cy3-pep in buffer 

For caspase-3 detection, UCNP@PDA@Cy3-pep (Yb content: 50 μg 
mL− 1) were incubated with various concentrations of caspase-3 in 500 
μL assay buffer (see SI for details) at 37 ◦C for 1 h. Subsequently, the 
fluorescence and UCL spectra of the mixture were measured at the 
excitation wavelengths of 530 nm and 980 nm continuous wave (CW) 
NIR laser, respectively. To investigate its selectivity, the 
UCNP@PDA@Cy3-pep were incubated with a series of enzymes and 
proteins including trypsin, lysozyme, thrombin, caspase-7, caspase-9, 
and caspase-3 inhibitor (Z-DEVD-FMK) under optimized conditions. 

2.3. Detection of caspase-3 activity in MG-63 cells 

The MG-63 cells (8 × 103 cells per well) were seeded into 96-well 
microtiter plate for 24 h. Afterward, the cells were treated with 50 μg 
mL− 1 UCNP@PDA@Cy3-pep or UCNP@PDA@Cy3-pep@STS in 100 μL 
fresh DMEM at 37 ◦C for another 3 h, and the untreated cells were used 
as control sample. Then, the cells were irradiated under different laser 
densities (1.5 and 1.8 W cm− 2) for 6 min, and the temperature changes 
of MG-63 cells were recorded by an infrared thermal camera. The cells 
were further incubated in darkness at 37 ◦C for another 4 h and then 
washed with 100 μL PBS. Finally, the cells were imaged by a recon-
structive Nikon Ti-S fluorescent microscope with excitation wavelengths 
at 530 nm for Cy3 imaging and 980 nm for UCL imaging. For quanti-
tative measurement, UCNP@PDA@Cy3-pep or UCNP@PDA@Cy3- 
pep@STS stained cells in 48-well plate were irradiated by 808 nm 
laser which is equipped with a 1 cm beam expander. Then, the cells were 
detached from the 48-well plate and then centrifuged at 1000 rpm for 5 
min and redispersed in 500 μL PBS. In addition, the cells treated with 
100 μM STS for 4 h were also detached from the 6-well plate and 
resuspended in 100 μL lysis buffer. Subsequently, the cell lysates con-
taining different cell numbers were incubated with UCNP@PDA@Cy3- 
pep (Yb content: 50 μg mL− 1) in 500 μL assay buffer at 37 ◦C for 1 h. 
Then, the fluorescence and UCL spectra of mixture were measured, 
respectively. 

2.4. In vivo apoptosis imaging 

All animal experiments were conformed to the guidelines of the 
Regional Ethics Committee for Animal Experiments established by Jilin 
University Institutional Animal Care and Use. Male BALB/c nude mice 
(4–6 weeks old) were selected for establishing a MG-63 tumor model and 
inoculated with MG-63 cells on the right flanks of mice. As the tumor 
volume reached about 60 mm3, the mice were divided into six treatment 
groups: (i) UCNP@PDA@Cy3-pep, (ii) UCNP@PDA@Cy3-pep@STS, 
(iii) UCNP@PDA@Cy3-pep + laser (1.5 W cm− 2), (iv) 
UCNP@PDA@Cy3-pep + laser (1.8 W cm− 2), (v) UCNP@PDA@Cy3- 
pep@STS + laser (1.5 W cm− 2), (vi) UCNP@PDA@Cy3-pep@STS +
laser (1.8 W cm− 2). Then, 1.5 mg mL− 1 UCNP@PDA@Cy3-pep or 
UCNP@PDA@Cy3-pep@STS (Yb3+ content, 150 μL 0.9 wt% NaCl) were 
injected intravenously into tumor-bearing mice. The mice were irradi-
ated with an 808 nm laser at 6 h post-injection and the temperature 
increases at tumor sites were recorded. Subsequently, the in vivo fluo-
rescence imaging was collected by the Davinch Invivo HR imaging 
system at predetermined time intervals. Meanwhile, the in vivo UCL 
imaging was also performed at the indicated time points of post- 
irradiation on a home-made in vivo imaging system equipped with a 
980 nm laser (2.5 W cm− 2). 
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3. Results and discussion 

3.1. Construction and characterization of the UCNP@PDA@Cy3-pep 

The as-proposed FRET ratiometric sensing platform (illustrated in 
Scheme 1) was using Cy3 as the energy donor, PDA as the energy 
acceptor and UCNP as the internal reference. In the absence of caspase- 
3, the UCNP@PDA@Cy3-pep shows weak fluorescence intensity due to 
the efficient quenching effect of PDA. In the presence of caspase-3, the 
FRET system is broken through the cleavage of specific substrate 
(DEVD), resulting in a recovery of Cy3 fluorescence emission. The re-
covery of Cy3 fluorescence is dependent on the activity of caspase-3, i.e., 
the higher activity level of caspase-3 leads to stronger recovery of high 
fluorescence emission of Cy3. Because there are individual differences in 
cells and other organisms, the cellular internalization amount and tumor 
accumulation amount of UCNP@PDA@Cy3-pep exhibit slightly varia-
tion between different individuals. For improving detection accuracy of 
caspase-3 activity, the ratio of recovered Cy3 fluorescence intensity with 
UCL intensity (FR = ΔFCy3/IUCL654. Herein, ΔF = FCy3 - F0Cy3, F0Cy3 and 
FCy3 represent the maximum fluorescence intensities of 
UCNP@PDA@Cy3-pep solutions before and after cleaved by caspase-3, 
respectively) was used to determine the caspase-3 activity. The detec-
tion strategy can eliminate the effect of UCNP@PDA@Cy3-pep amount 
on the accuracy of detection result. 

The as-prepared UCNPs have bright single-band red emission under 
980 nm NIR laser excitation (Fig. S2). The as-synthesized Er (core), 
Er@Yb (core@shell) and Er@Yb@Y (core@shell@shell) UCNPs have 
uniform size with mean sizes of 21.2 ± 1.9, 26.6 ± 1.7 and 33.3 ± 2.1 
nm in diameters, respectively (as shown in Fig. S3). After coated by PDA 
shell with the thickness of 8 nm, the average size of UCNP@PDA reaches 
49.8 ± 2.5 nm in diameters. The XRD patterns of three kinds of UCNPs 
are all indexed exactly to pure hexagonal phase of β-NaErF4 (JCPDS NO. 
27–0689, as shown in Fig. S4). XPS measurement results in Fig. S5 

clearly show the presence of the element of Yb in Er@Yb and the 
element of Nd in Er@Yb@Nd, which indicates the successful synthesis of 
the core@shell@shell nanoparticles. 

The as-prepared UCNP@PDA were further modified by Cy3-pep, 
which contains a specific cleavable site (DEVD) against caspase-3 and 
active tumor-targeting site (PSP) [41,42]. As shown in Fig. S6, after the 
conjugation of Cy3-pep with UCNP@PDA, the maximum absorption 
peak of Cy3 is red-shifted from 544 nm to 556 nm, indicating the strong 
interaction between Cy3 and PDA. In addition, the 
UCNP@PDA@Cy3-pep shows obvious absorption at 808 nm, suggesting 
the great potential of UCNP@PDA@Cy3-pep for photothermal treat-
ment. XPS measurement result in Fig. S7 clearly shows the presence of 
element Cl in UCNP@PDA@Cy3-pep, which confirms the successful 
surface modification of Cy3-pep. As shown in Fig. 1a, the quenching 
ratio of Cy3 (FQR = ΔF1/Fadded (Cy3). Herein, ΔF1 = Fadded (Cy3) - Fsu-

pernatant, Fadded (Cy3) means the maximum fluorescence intensity of added 
Cy3-pep solution and Fsupernatant means the maximum fluorescence in-
tensity of supernatant after conjugation of Cy3-pep with PDA) is 
increased with increasing the mass ratio of UCNP@PDA to Cy3-pep (Rm) 
and reaches c.a. 0.95 when the Rm is more than 25. Therefore, all of the 
following used UCNP@PDA@Cy3-pep were synthesized at Rm of 25. The 
TGA analysis indicates the weight loss of UCNP@PDA@Cy3-pep is 7.2% 
more than that of UCNP@PDA, demonstrating the successful surface 
coating of Cy3-pep (Fig. S8). The increasing hydrodynamic diameters 
(HDs) of UCNP@PDA@Cy3-pep also verify the successful surface 
modification of Cy3-pep (Table S2). After conjugation of Cy3-pep with 
UCNP@PDA, the fluorescence of Cy3 is significantly quenched 
(Fig. S9a), while the UCL intensity of UCNP shows negligible change (as 
shown in Fig. S2b). Furthermore, about 294 Cy3-peptide molecules were 
immobilized on one UCNP@PDA NP according to the standard cali-
bration curve of Cy3-pep (Fig. S9). Upon 808 nm NIR laser irradiation, 
UCNP@PDA@Cy3-pep could effectively convert light energy to thermal 
energy with a monotonical increase of solution temperature in a 

Scheme 1. The schematic illustration of UCNP@PDA@Cy3-pep-based FRET sensing platform for in situ activation and real-time monitoring caspase-3 activity.  
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concentration-dependent or laser density-dependent manner (as shown 
in Fig. S10). Among these laser densities, 1.5 and 1.8 W cm− 2 were 
selected for the follow experiments (Fig. 2a). The 
UCNP@PDA@Cy3-pep has reasonable photothermal conversion effi-
ciency (η = 21.8 %) and photothermal stability (as shown in Figs. S10c, 
d, S11, S12). Furthermore, there are negligible effects on the reaction 
efficiency of UCNP@PDA@Cy3-pep and UCNP@PDA@Cy3-pep@STS 
with caspase-3 after irradiated by 808 nm laser for 10 min (as shown 
in Figs. S14, S15). The experimental results suggest that 
UCNP@PDA@Cy3-pep is not only an excellent sensing platform for 
detection of caspase-3, but also an ideal agent for PTT. In order to 
achieve photothermal-chemotherapy, a clinical chemotherapy drug, STS 
was further loaded on the UCNP@PDA surface. The STS loading effi-
ciency of UCNP@PDA@Cy3-pep is determined to be about 0.93 mg 
STS/mg UCNP@PDA@Cy3-pep. The high loading capacity could be 
attributed to the strong intermolecular interactions (such as π–π stacking 

interaction and hydrogen bond) between STS and PDA. The character-
istic peak of STS is red-shifted from 295 nm to 298 nm, indicating the 
successful loading of STS (Fig. S16). Due to the protonation of amino 
groups in the STS molecules, the Zeta potential of STS loaded 
UCNP@PDA@Cy3-pep (termed as UCNP@PDA@Cy3-pep@STS) is 
higher than that of UCNP@PDA@Cy3-pep (Table S1). Simultaneously, 
the increasing HDs of UCNP@PDA@Cy3-pep@STS further prove the 
successful loading of STS (as shown in Table S2). In addition, 
UCNP@PDA@Cy3-pep@STS has the same UCL and fluorescence prop-
erties as those of UCNP@PDA@Cy3-pep (as shown Figs. S2b and S17). 
The drug releasing behaviors of UCNP@PDA@Cy3-pep@STS were 
investigated under various solution with different pH values (5.0, 6.5 
and 7.4). The STS release efficiency is increased by decreasing the pH 
value (Fig. S18a). Once the nanocomposites were irradiated with an 808 
nm laser, a burst release of STS about 2.5% was observed from 
UCNP@PDA@Cy3-pep@STS at pH 6.5 (Fig. 2b), while 3.1% was 

Fig. 1. (a) The FQR curves of Cy3-pep conju-
gates at different Rm. (b) The FR of 
UCNP@PDA@Cy3-pep treated with 50 ng mL− 1 

caspase-3 at various incubation times. (c) 
Fluorescence spectra of UCNP@PDA@Cy3-pep 
treated with various concentrations of caspase- 
3. The inset is the corresponding calibration 
curve of FR versus caspase-3 concentration. (d) 
The selectivity of the UCNP@PDA@Cy3-pep. 
The inset is the corresponding fluorescence 
spectra. The error bars mean standard de-
viations (n = 3).   

Fig. 2. (a) The solution temperature curves of UCNP@PDA@Cy3-pep aqueous solution (100 μg mL− 1) irradiated by an 808 nm laser with 1.5 and 1.8 W cm− 2, 
respectively. (b) Release profiles of STS from UCNP@PDA@Cy3-pep@STS at pH 6.5 with or without 808 nm laser irradiation (1.8 W cm− 2) at predetermined time 
points indicated by arrows. 
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observed from UCNP@PDA@Cy3-pep@STS at pH 5.0 (Fig. S18b). The 
pH-dependent and NIR-responsive release behaviors could be used to 
accelerate the intracellular drug release under certain circumstances. 

3.2. Sensing performance of UCNP@PDA@Cy3-pep in buffer 

The FR is gradually increased as the reaction time prolonged and 
reaches saturation at approximately 60 min (Fig. 1b). The result suggests 
that UCNP@PDA@Cy3-pep has relatively rapid response time. The 
fluorescence intensity of Cy3 is proportionally increased with the in-
crease of caspase-3 concentration (as shown in Fig. 1c). After incubation 
with caspase-3 for 60 min, the UCL spectra of UCNP@PDA@Cy3-pep 
show negligible change (Fig. S13). There is a good linear correlation 
between the FR and caspase-3 concentrations within the range of 0.5–50 
ng mL− 1 with the LOD of 0.065 ng mL− 1 (S/N = 3), which is comparable 
to or better than those of reported assays [43–45]. In addition, the 
sensing capability of UCNP@PDA@Cy3-pep@STS were also examined 
through detecting the caspase-3 activity. The sensing performance of 
UCNP@PDA@Cy3-pep@STS (i.e., linear range (0.5–50 ng mL− 1) and 
LOD (0.073 ng mL− 1)) is similar to that of UCNP@PDA@Cy3-pep, 
indicating that caspase-3 response of UCNP@PDA@Cy3-pep is not 
affected by STS loading (as shown in Fig. S17). To test its selectivity, 
UCNP@PDA@Cy3-pep was treated with other enzymes and proteins, 
including trypsin, lysozyme, thrombin, caspase-7, caspase-9, and 
caspase-3 plus inhibitor (Z-DEVD-FMK). UCNP@PDA@Cy3-pep dis-
plays the strongest response against the caspase-3 among these analytes 
(as shown in Fig. 1d). Although caspase-7 can also recognize and cleave 
the peptide containing DEVD site [46,47], the FR of 
UCNP@PDA@Cy3-pep cleaved by caspase-3 is about 4-fold higher than 
that of UCNP@PDA@Cy3-pep cleaved by caspase-7. In the presence of 
Z-DEVD-FMK, it is noteworthy that the FR is decreased significantly. The 
results demonstrate that UCNP@PDA@Cy3-pep has reasonable selec-
tivity for detection of caspase-3. 

3.3. In vitro cytotoxicity evaluation 

Prior to intracellular detection, the cytotoxicity of 
UCNP@PDA@Cy3-pep and UCNP@PDA@Cy3-pep@STS were 

examined under different conditions by MTT assay in MG-63 cells. As 
shown in Fig. S19a, the cell viability of UCNP@PDA@Cy3-pep stained 
MG-63 cells is still above 95 % when the concentration of the 
UCNP@PDA@Cy3-pep is up to 100 μg mL− 1 (Yb content). The 
UCNP@PDA@Cy3-pep@STS shows apparent cytotoxicity on MG-63 
cells, which can be attributed to the STS release under acidic tumor 
microenvironment. After combined with an 808 nm laser, the cell via-
bilities of UCNP@PDA@Cy3-pep or UCNP@PDA@Cy3-pep@STS 
stained MG-63 cells are dropped dramatically, demonstrating a 
concentration-dependent relationship. Importantly, the cytotoxicity of 
UCNP@PDA@Cy3-pep@STS is much higher than that of 
UCNP@PDA@Cy3-pep under the same concentration due to the pho-
tothermal enhanced chemotherapeutic treatment outcome of STS at 
elevated temperatures. This result suggests that UCNP@PDA@Cy3- 
pep@STS has an outstanding synergistic antitumor effect, which is 
more efficacious in inducing a high number of apoptotic cancer cells. In 
addition, the cell viabilities of free STS under various concentrations are 
shown in Fig. S19b, indicating the prominent anticancer efficiency of 
STS. 

3.4. Intracellular caspase-3 activity detection 

For demonstrating their sensing capabilities, the UCNP@PDA@Cy3- 
pep and UCNP@PDA@Cy3-pep@STS were employed for evaluating 
response of MG-63 cells to different treatments by real-time monitoring 
caspase-3 activity. The UCNP@PDA@Cy3-pep and UCNP@PDA@Cy3- 
pep@STS stained MG-63 cells both exhibit strong red UCL emission (as 
shown in Fig. 3a–g), indicating the efficient cell uptake of them. As ex-
pected, the Cy3 fluorescence signal of cells was strongly dependent on the 
treatments. As shown in Fig. 3i, the FR of cells follow the order, 
UCNP@PDA@Cy3-pep@STS plus 1.8 W cm− 2 808 nm laser >

UCNP@PDA@Cy3-pep@STS plus 1.5 W cm− 2 808 nm laser 
>UCNP@PDA@Cy3-pep plus 1.8 W cm− 2 808 nm laser >

UCNP@PDA@Cy3-pep@STS > UCNP@PDA@Cy3-pep plus 1.5 W cm− 2 

808 nm laser. The result is in accordance with the result of cytotoxicity 
experiment. The Cy3 fluorescence signal of UCNP@PDA@Cy3-pep@STS 
stained cells is higher than that of UCNP@PDA@Cy3-pep stained cells 
because the apoptotic machinery of tumor cells can be activated by STS 

Fig. 3. Fluorescence/UCL imaging of 
UCNP@PDA@Cy3-pep and UCNP@PDA@Cy3- 
pep@STS stained MG-63 cells with various 
treatments. (a) UCNP@PDA@Cy3-pep. (b) 
UCNP@PDA@Cy3-pep@STS. (c) UCNP@PDA@ 
Cy3-pep plus 808 nm laser (1.5 W cm− 2). (d) 
UCNP@PDA@Cy3-pep plus 808 nm laser (1.8 
W cm− 2). (e) UCNP@PDA@Cy3-pep@STS plus 
808 nm laser (1.5 W cm− 2). (f) 
UCNP@PDA@Cy3-pep@STS plus 808 nm laser 
(1.8 W cm− 2). (g) UCNP@PDA@Cy3-pep@STS 
plus 808 nm laser (1.8 W cm− 2) in the pres-
ence of 50 μmol L-1 Z-DEVD-FMK before irra-
diation. Images are obtained from (i) bright- 
field mode, (ii) Cy3 channel, (iii) UCL chan-
nel, (iv) Infrared thermal images of cells with 
various treatments, respectively. Scale bar: 20 
μm. (h) Fluorescence emission spectra of 
UCNP@PDA@Cy3-pep and UCNP@PDA@Cy3- 
pep@STS stained MG-63 cells under various 
treatments. (i) Corresponding FR of MG-63 cells 
under various treatments.   
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[48]. After an 808 nm laser irradiation, the Cy3 fluorescence signals of 
UCNP@PDA@Cy3-pep/UCNP@PDA@Cy3-pep@STS stained cells 
exhibited a laser intensity (i.e. temperature-dependent man-
ner)-dependent enhancement, suggesting that the apoptosis rate of tumor 
cells is increased by increasing the environmental temperature. Under 
the same laser irradiation conditions, the FR of 
UCNP@PDA@Cy3-pep@STS treated cells is higher than that of 
UCNP@PDA@Cy3-pep treated cells, demonstrating the occurrence of 
synergistic effect of photothermal-chemotherapy on cell apoptosis. The 
Cy3 fluorescence of UCNP@PDA@Cy3-pep@STS is decreased dramati-
cally by the Z-DEVD-FMK, implying that the recovery of Cy3 is owing to 
breaking FRET system through the enzymatic cleavage by caspase-3 (as 
shown in Fig. 3g). Furthermore, no fluorescence signals are observed in 
control groups (as shown in Fig. S20). 

As shown in Fig. 4, the fluorescence intensity is gradually increased 
with the increase of MG-63 cell numbers treated by 100 μM STS. And the 
FR value of UCNP@PDA@Cy3-pep is linear with the cell numbers within 
the range of 1 × 103 to 5 × 104 cells with a LOD of 448 cells. The cor-
responding UCL intensities of UCNP@PDA@Cy3-pep with various 
numbers of MG-63 cells at 654 nm are shown in Fig. S22. All of the 
experimental results suggest that UCNP@PDA@Cy3-pep and 
UCNP@PDA@Cy3-pep@STS could be used to evaluate the therapeutic 
effect through in situ activation and real-time monitoring of caspase-3 
activity level in cancer cells. 

3.5. In vivo caspase-3 activity detection 

A mouse-bearing xenograft MG-63 tumor was used as model for 
demonstrating the in vivo practicability of UCNP@PDA@Cy3-pep. Prior 
to in vivo monitoring photothermal-chemotherapy in real time, the 
toxicity of the UCNP@PDA@Cy3-pep was evaluated by histology anal-
ysis and blood test. As shown in Fig. S23, the histology analysis 
demonstrate that there is neither noticeable tissue damage nor inflam-
mation of UCNP@PDA@Cy3-pep on major organs. There is little dif-
ference in blood examination between control mouse and 
UCNP@PDA@Cy3-pep-treated mouse (Table S3). In addition, no he-
molytic phenomenon is observed (Fig. S24). These results indicate that 
UCNP@PDA@Cy3-pep has good biocompatibility. MG-63 tumor- 
bearing mice were injected with UCNP@PDA@Cy3-pep and 
UCNP@PDA@Cy3-pep@STS through tail veins and imaged at different 
time points, respectively. The maximum UCL intensities of tumor sites 
were observed at 6 h post-injection(as shown in Fig. S25), indicating the 

maximum accumulation of nanoparticles in tumor sites. Therefore, the 
PTT was carried out at 6 h post-injection. Due to the enhanced perme-
ability and retention (EPR) effect and high binding affinity of PSP with 
tumor cells, UCNP@PDA@Cy3-pep exhibits relatively high accumula-
tion amount (14 %ID g− 1) in tumor (as shown in Fig. S26), suggesting 
that UCNP@PDA@Cy3-pep has high tumor-targeting capacity. This 
phenomenon helps to improve the detection performance in vivo. The 
Cy3 fluorescence intensities and FR of tumor sites are varied with 
different treatments (as shown in Fig. 5). For instance, no fluorescence 
signals were observed in control groups (as shown in Fig. S27). Under 
the same experimental conditions, the FR of tumor sites in 
UCNP@PDA@Cy3-pep@STS treated mice (group (v) and (vi)) are 
higher than those of UCNP@PDA@Cy3-pep treated mice (group (iii) and 
(iv)). The tumor sites of UCNP@PDA@Cy3-pep treated group (i) exhibit 
weak Cy3 fluorescence signal, indicating that UCNP@PDA@Cy3-pep 
has low nonspecific interaction with tumor microenvironment and 
extremely poor toxicity to cancer cells. The Cy3 fluorescence signals of 
tumor sites in UCNP@PDA@Cy3-pep@STS treated group (ii) are grad-
ually increased over time, and exhibit 90 % increase in FR compared 
with UCNP@PDA@Cy3-pep treated group (i) at 4 h. The results confirm 
that STS were efficiently released from UCNP@PDA@Cy3-pep@STS 
under acidic tumor microenvironment, leading to activate caspase-3 
mediated apoptosis. After 808 nm laser irradiation, the enhanced Cy3 
fluorescence signals of tumor sites are observed in both 
UCNP@PDA@Cy3-pep treated mice (group (iii) and (iv)) and 
UCNP@PDA@Cy3-pep@STS treated mice (group (v) and (vi)). Gener-
ally, Cy3 fluorescence signals exhibit the laser intensity-dependent 
enhancement, and have peaked at 6 h post-irradiation. For instance, 
the FR of tumor sites in UCNP@PDA@Cy3-pep@STS plus 808 nm NIR 
laser treated mice are 4.1 times (1.5 W cm− 2) and 4.5 times (1.8 W 
cm− 2) higher than those of UCNP@PDA@Cy3-pep treated mice, 
respectively. In particular, the FR of tumor sites in UCNP@PDA@Cy3- 
pep@STS treated mice (group (v)) with 1.5 W cm-2 808 nm laser irra-
diation are higher than those of UCNP@PDA@Cy3-pep treated mice 
(group (iv)) with 1.8 W cm-2 808 nm laser irradiation, indicating the 
more effective apoptosis induced by low-temperature (43.5 ◦C) PTT- 
chemo synergistic therapy, which is favorable for minimizing tissue 
damage by hyperthermia. These experimental results demonstrate that 
the 808 nm laser irradiation can enhance the release of STS from 
UCNP@PDA@Cy3-pep@STS, and there is strong synergistic effect of the 
PTT of PDA and chemotherapy of STS. 

4. Conclusion 

In summary, a fluorescence turn-on ratiometric sensing platform has 
been developed for detection of PTT- and drug-triggered caspase-3 ac-
tivity in real time through immobilization of caspase-3 cleavable Cy3 
modified peptide and loading of anticancer drug on PDA coated UCNP. 
The results demonstrate that the as-proposed sensing platform has 
reasonably low LOD for caspase-3 activity detection combined with a 
large dynamic range. Due to building multiple functionalities in a single 
nanoparticle, the as-proposed sensing platform can effectively capture 
the temporal apoptosis process. All of the experimental results un-
equivocally confirm that the sensing platform can be served as an ideal 
tool for real-time noninvasive evaluation of tumor response to different 
treatment modes including PTT, chemotherapy and photothermal- 
chemo synergistic therapy. 
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